- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
MapReduce in Big Data: Career Scope, Applications & Skills
Updated on 17 October, 2022
5.86K+ views
• 8 min read
Table of Contents
You may not believe that every day more than 305 billion emails are sent all over the world. There are over 3.5 billion search queries on Google every day. This tells us that a large amount of data is being generated by humans every day. According to statistics, human beings produce 2.5 quintillion data bytes every day. Imagine the large chunks of data that companies need to store, manage and process efficiently. It is a mammoth task.
Therefore, scientists and engineers focus on developing new platforms, technologies, and software to efficiently manage large amounts of data. These technologies also help companies to filter relevant data and use it for generating revenues. One such technology is MapReduce in Big Data.
What is MapReduce?
MapReduce is an algorithm or programming model used in the Hadoop software that is a platform to manage big data. It splits Big data clusters in the Hadoop File System (HDFS) into small sets.
As the name suggests, the MapReduce model uses two methods – map and reduce. The entire process is done in three stages; splitting, applying and combining.
During the mapping process, the algorithm divides the input data into smaller segments. Then, the data is mapped to perform the required action and creates key-value pairs. In the next step, these key-value pairs are brought together. This is known as merging or combination. It is commonly called the shuffling stage. These key-value pairs are sorted by bringing together inputs with the same set of keys and removing duplicate data.
Next is the reduction stage, at which input is received from the merging and sorting stage. During this step, different sets of data are reduced and combined into a single output. It is the summary stage.
If you are a beginner and would like to gain expertise in big data, check out our big data courses.
Explore Our Software Development Free Courses
What is the use of MapReduce in BigData?
Big Data is available both in structured and unstructured form. While it is easier for companies to process structured data, unstructured data poses a concern for companies. This is where MapReduce in Big Data comes to the rescue. Here are some of the benefits of MapReduce in Hadoop software.
1. Converts Big Data Into Useful Form
Big Data is usually available in raw form that needs to be converted or processed into useful information. However, it becomes nearly impossible to convert Big data through traditional software due to the sheer volume. MapReduce processes Big data and converts it into key-value pairs that add value to businesses and companies.
upGrad’s Exclusive Software Development Webinar for you –
SAAS Business – What is So Different?
MapReduce is beneficial for various sectors. For instance, the use of MapReduce in the medical industry will assist in going through huge files and previous records and processing the patients’ medical history. Thus, it saves time and aids early treatment of patients, especially in critical ailments. Similarly, the eCommerce sector helps to process essential data, including customer orders, payments, inventory stocks, etc.
2. Decreases Risk
Big Data is available across connected servers. Therefore, even a slight breach in security can result in a big loss to companies. Companies can prevent data loss and cyber breaches with several layers of data encryption. The MapReduce algorithm decreases the chances of data breaches. Since MapReduce is a parallel technology, it performs several functions simultaneously and adds a layer of security because it becomes difficult to track all the tasks carried out together. Also, MapReduce converts data into key-value pairs that serve as a layer of encryption.
3. Detects Duplicate Data
One of the significant benefits of MapReduce is the deduplication of data which is identifying duplicate and redundant data and getting rid of it. The MD5 marker in the MapReduce algorithm finds duplicate data in key-value pairs and eliminates it.
Explore our Popular Software Engineering Courses
4. Cost-effective
Since Hadoop has a cloud storage facility, it is cost-effective for companies compared to other platforms where companies need to spend on additional cloud storage. Hadoop. MapReduce breaks down large data sets and into small parts that are easy to store.
What is the Career Scope of MapReduce in Big Data?
It is expected that the amount of data produced by humans per day will reach 463 exabytes by 2025. Therefore, in the next few years, the market growth of MapReduce is likely to grow at a tremendous speed. This will eventually increase the number of job opportunities in the MapReduce industry.
The market size of Hadoop is expected to increase exponentially by 2026. In 2019, the Hadoop market size was $26.74 billion. It is predicted that the market will grow at a CAGR of 37.5% by 2027 and will reach over $340 million.
Various factors are contributing to the exponential rise of Hadoop and MapReduce services. The growth in competition due to the increasing number of businesses and enterprises is the driving factor. Even the small and medium sector enterprises (SMEs) are also adopting Hadoop. In addition, rising investment in the data analytics sector is another factor driving the growth of Hadoop and MapReduce.
Also, since Hadoop is not confined to a particular sector, you get an opportunity to choose your desired field. You can get into finance and banking, media and entertainment, transportation, healthcare, energy, and education.
Let us see the most desired roles in the Hadoop Industry!
1. Big Data Engineer
This is a prominent position in any company. Big data engineers have to build solutions for companies that can effectively collect, process, and analyze big data. The average salary of a big data engineer in India is INR 8 lakhs per annum.
2. Hadoop Developer
The role of a Hadoop Developer is similar to a software developer. The foremost responsibility of a Hadoop Developer is to code or program Hadoop Applications and write codes to interact with MapReduce. A Hadoop Developer is responsible for building and operating the application and troubleshooting errors. It is essential to know Java, SQL, Linux, and other coding languages. The average base salary of a Hadoop Developer in India is INR 7,55,000.
In-Demand Software Development Skills
3. Big Data Analyst
As the name suggests, the job description of a Big data analyst is to analyze the Big data and convert it into useful information for companies. A Data Analyst interprets the data to find patterns. The essential skills required to become a Big data analyst are data mining and data auditing.
A Big Data Analyst is one of the highest-paying profiles in India. The average salary of an entry-level data analyst is six lakhs, whereas an experienced Big data analyst can earn up to INR 1 million per year.
4. Big Data Architect
This job includes facilitating the entire Hadoop process. A Big data architect’s job is to oversee Hadoop deployment. He plans, designs, and comes up with strategies about how an organization can scale with the help of Hadoop. The annual salary of an experienced Big data architect in India is nearly 20 lakhs per year.
Learn Software Development Courses online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs or Masters Programs to fast-track your career.
How Can You Learn MapReduce Skills?
With plenty of jobs in the market, the number of job seekers in Hadoop is also high. Therefore, you must learn relevant skills to gain a competitive edge.
The most desired skills to build a career in MapReduce are data analytics, Java, Python, and Scala. You can learn the intricacies of Big Data, Hadoop Software, and MapReduce by pursuing a certificate course in Big Data.
Popular Articles related to Software Development
upGrad’s Advanced Certificate Programme in Big Data helps you acquire real-time learning of data processing and warehousing, MapReduce, cloud processing, and more. This program is best suited for working professionals who wish to switch their careers in Big Data or enhance their skills for growth. upGrad also offers career support to all the learners like mock interviews and job affairs.
Conclusion
Hadoop is one of the most coveted careers today. With the increasing production of data with every passing day, plenty of growth opportunities will be available in Hadoop and MapReduce areas in the next few years. If you are looking for a challenging and high-paying role, you can consider a job in the Hadoop industry. For this, you will need to learn various skills that will give you an added advantage.
Check our other Software Engineering Courses at upGrad.
Frequently Asked Questions (FAQs)
1. What are the disadvantages of MapReduce?
There are many reasons why MapReduce might not work out for you. One of the prominent ones includes real-time processing. Additionally, MapReduce has a rigid framework and isn’t flexible at all. Furthermore, with MapReduce, the need to perform coding manually is very extensive; therefore simple operations like joins, projection, sorting, and distinct require a lot of effort solving. Semantics is the next disadvantage as it hides the map which makes it difficult to optimize and implement operations.
2. What are some of the benefits of using MapReduce with Hadoop?
There are tons of advantages to why MapReduce and Hadoop are a good blend. MapReduce allows parallel processing, i.e., tasks can be subdivided and executed simultaneously. Using Hadoop, which is a very scalable platform, helps in large chunks of data distribution across multiple servers. The next reason would be how cost-effective Hadoop is. The constant need for data keeps on rising, and with Hadoop, all the data-storage requirements are effectively managed. Another benefit is the simplicity of the Hadoop programming model which makes it a preferred choice. Plus, Hadoop’s security is structured with HBase and has an upper hand over other platforms. Considering these benefits, MapReduce with Hadoop will have unlimited future prospects.
3. What is the future scope of using MapReduce?
With Spark taking over, it won’t be an accurate conclusion to say that the end of the road for Hadoop and MapReduce has come. They will stick together in the upcoming time; however, people’s inclination toward spark could make their survival challenging. MapReduce and Hadoop are widely being used in trading and financial companies in the form of mainframe systems. Nonetheless, Spark’s invention has taken the limelight away from MapReduce and Hadoop and shall continue to do so in the coming time. Shortly, the advanced inventions to look out for will see Apache Spark, Apache Kafka, and Apache Storm instead of Hadoop and MapReduce.