- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
MinMax Algorithm in AI: Components, Properties, Advantages & Limitations
Updated on 20 November, 2024
38.48K+ views
• 7 min read
Table of Contents
- How does it work?
- Breaking down the MinMax Algorithm in AI
- Pseudo-code for MinMax Algorithm
- Properties of MinMax Algorithm in AI
- Advantages of MinMax Algorithm in AI
- Limitations of the MinMax Algorithm in AI
- Applications of the MinMax Algorithm
- Variations of the MinMax Algorithm
- MinMax Algorithm Future Developments
- Conclusion
The MinMax algorithm in AI, popularly known as the minimax, is a backtracking algorithm used in decision making, game theory and artificial intelligence (AI). It is used to find the optimal move for a player, assuming that the opponent is also playing optimally. Popular two-player computer or online games like Chess, Tic-Tac-Toe, Checkers, Go, etc. use this algorithm.
A backtracking algorithm is used to find a solution to computational problems in such a way that a candidate is incrementally built towards a solution, one step at a time. And the candidate that fails to complete a solution is immediately abandoned.
How does it work?
In the MinMax algorithm in artificial intelligence , there are two players, Maximiser and Minimiser. Both these players play the game as one tries to get the highest score possible or the maximum benefit while the opponent tries to get the lowest score or the minimum benefit.
Every game board has an evaluation score assigned to it, so the Maximiser will select the maximised value, and the Minimiser will select the minimised value with counter moves. If the Maximiser has the upper hand, then the board score will be a positive value, and if the Minimiser has the upper hand, then the board score will be a negative value.
This is based on the zero-sum game concept where the total utility score gets divided between the two players. Thus, an increase in one player’s score leads to a decrease in the opponent player’s score, making the total score always zero. So, for one player to win, the other has to lose.
Join the Machine Learning Certification & AI courses online from the World’s top Universities. Earn Masters, Executive PGP, or ACP to fast-track your career.
Breaking down the MinMax Algorithm in AI
The complete game tree is explored with a depth-first search algorithm in the MinMax algorithm in AI. It proceeds entirely down to the terminal node of the tree and then backtracks through the tree.
FYI: Free NLP course!
The goal is to find the best possible move for a player. This can be done by choosing the node with the best evaluation score. The best choice will be made after evaluating all the potential moves of the opponent. The algorithm looks ahead at all the possible values till the end and makes a decision for the player.
The game tree above is a nested data structure that is used to evaluate the moves. Here the root node is Level 0, which branches out into Level 1 or parent nodes, which further branch out into Level 2 or child nodes. The branching out can continue to many levels, having the potential of infinite levels. Level 0 is like the current state of the board, while Level 1 is all the possible states of boards depending on the next move.
Thus, if Player 2 has made a move, we can assume that the root node is the current state of the board, waiting for Player 1’s move. Level 1 nodes contain all the possible moves for Player 1, and the Level 2 nodes contain all the possible moves for Player 2 based on each possible move of Player 1.
Consider an example where there are four final states, and the path to reach these is from the root to the four leaves of a tree. The values of the four leaves are 3, 6 on the left and 4, 7 on the right. It is the Maximiser/Player 1’s turn to make a move. To run through the Min max algorithm in AI example, assumptions for each move have to be made.
If the Player 1 chooses to go left, the Minimiser/Player 2 has to choose the least between 3 and 6, and so they would choose 3. Whereas if the Player 1 chooses right, the Player 2 will choose 4, which is the minimum of the two values, 4 and 7. So, Level 1 now has the values 3 and 4.
Since it is the Player 1/Maximiser’s turn, they have to choose the maximum of Level 1 nodes. Thus, they will choose 3. Then the optimal choice is to go left.
The steps for the MinMax algorithm in artificial intelligence can be stated as follows:
- Create the entire game tree.
- Evaluate the scores for the leaf nodes based on the evaluation function.
- Backtrack from the leaf to the root nodes:
For Maximizer, choose the node with the maximum score.
For Minimizer, choose the node with the minimum score.
- At the root node, choose the node with the maximum value and select the respective move.
Also Read: Machine Learning Project Ideas
Pseudo-code for MinMax Algorithm
function minMax(node, depth, maximizingPlayer)
if depth = 0 or node is a terminal node
return the heuristic value of node
if maximizingPlayer
bestValue := -∞
for each child of node
value := minMax(child, depth – 1, FALSE)
bestValue := max(bestValue, value)
return bestValue
else
bestValue := +∞
for each child of node
value := minMax(child, depth – 1, TRUE)
bestValue := min(bestValue, value)
return bestValue
In this pseudo-code:
- ‘node’ represents the current state of the game or decision tree node.
- ‘depth’ represents the maximum depth to which the algorithm should search.
- ‘maximizingPlayer’ is a Boolean variable indicating whether the current player is maximizing or minimizing.
- The ‘if depth = 0 or node is a terminal node’ condition checks if the maximum depth is reached or if the current node is a terminal node (i.e., end of the game).
- The ‘maximizingPlayer’ condition determines whether the algorithm should maximize or minimize the value.
- The algorithm recursively explores the game tree by evaluating all possible moves up to a certain depth and computes the heuristic value of each node.
- The ‘max’ and ‘min’ functions are used to select the maximum or minimum value among child nodes depending on whether the player is maximizing or minimizing.
Properties of MinMax Algorithm in AI
Here I have listed the properties of MinMax algorithm in AI:
- The algorithm is complete, meaning in a finite search tree, a solution will be certainly found.
- It is optimal if both the players are playing optimally.
- Due to Depth-First Search (DFS) for the game tree, the time complexity of the algorithm is O(bm), where b is the branching factor and m is the maximum depth of the tree.
- Like DFS, the space complexity of this algorithm is O(bm).
Advantages of MinMax Algorithm in AI
- A thorough assessment of the search space is performed.
- Decision making in AI is easily possible.
- New and smart machines are developed with this algorithm.
Limitations of the MinMax Algorithm in AI
- Because of the huge branching factor, the process of reaching the goal is slower.
- Evaluation and search of all possible nodes and branches degrades the performance and efficiency of the engine.
- Both the players have too many choices to decide from.
- If there is a restriction of time and space, it is not possible to explore the entire tree.
But with Alpha-Beta Pruning, the algorithm can be improved.
Applications of the MinMax Algorithm
The MinMax algorithm in AI is a fundamental component of game theory and artificial intelligence that is used in many domains were making decisions in the face of uncertainty or competition is common. Taking a close look at a few important applications:
- Robotics and Path Planning
MinMax is used in robotics for problems related to path planning and navigation, particularly when robots must avoid obstacles or plan paths across changing situations. It aids robots in making decisions that consider potential roadblocks and uncertainty to accomplish their goals.
- Strategic Planning
In many different fields, such as commercial planning, cybersecurity, and military strategy, MinMax is utilized in strategic planning and decision-making processes. Making the best decisions in competitive contexts requires the analysis of various strategies and the prediction of opponents’ movements.
- Game Playing
When playing turn-based video games, the MinMax algorithm in AI is often used to calculate the best move for the player. This tactic is used in games where players attempt to outwit their opponent and improve their chances of winning, such as Connect Four, Othello, Chequers, and Chess.
- Healthcare
When considering treatment alternatives, MinMax algorithm might be useful in weighing the potential benefits and drawbacks of each option. It helps healthcare providers decide what’s best for their patients’ treatment.
Variations of the MinMax Algorithm
Several modifications and improvements have been made to the MinMax algorithm in artificial intelligence to address various issues or boost its effectiveness in particular situations. Here are a few noteworthy MinMax algorithm in artificial intelligence variations:
- Alpha-Beta Pruning
Probably the most well-known application of the MinMax method is alpha-beta pruning. It does this by removing branches from the MinMax search tree that aren’t likely to have an impact on the outcome. The algorithm reduces the search space and increases speed by pruning branches that are guaranteed to be worse than previously evaluated branches by keeping two additional values, alpha and beta.
- Negamax Algorithm
A single function that combines the maximizing and minimizing of players is how the Negamax algorithm streamlines the MinMax method. It takes advantage of the fact that in two-player zero-sum games, the opponent’s value is negated, and the current player’s position is worth the same. The algorithm becomes simpler to use and has less complexity because of this simplification.
- Iterative Deepening
Iterative Deepening is a technique to improve the efficiency of the MinMax search that progressively increases the search depth until a time limit, or a terminal node is reached. Because of this, the technique can find reasonably good moves quickly, which is useful for scenarios requiring quick decisions or for real-time applications.
MinMax Algorithm Future Developments
Game theory and artificial intelligence have long relied heavily on the MinMax algorithm. The algorithm may be enhanced in a few places, though. The following are a few likely future advances for MinMax algorithms:
- Deep Learning Integration
Deep learning combined with MinMax could lead to more advanced bots that can comprehend complex patterns and moves in games. Deep learning has demonstrated notable success in a variety of fields, including gaming (e.g., AlphaGo).
- Metaheuristic Optimization
MinMax algorithms could be enhanced by incorporating metaheuristic optimization techniques, such as genetic algorithms or simulated annealing, to explore the search space more effectively and find optimal or near-optimal solutions in complex decision-making problems.
- Hybrid Algorithms
Future developments may involve the creation of hybrid algorithms that combine the strengths of MinMax with other techniques, such as Monte Carlo Tree Search (MCTS) or reinforcement learning. When dealing with complicated decision-making circumstances, these hybrid techniques may provide superior scalability and performance.
Conclusion
This article explains all the aspects of the min max algorithm in AI. First, an introduction of the theory is provided with examples of where it is used, after which there is a description of how the algorithm works in a game.
The algorithm is broken down to explain how a decision to make an optimal move is taken based on moves and counter moves of the players. The properties of the algorithm are then listed. Lastly, the advantages and disadvantages of minimax algorithm are provided.
If you’re interested to learn more about machine learning, check out IIIT-B & upGrad’s Executive PG Programme in Machine Learning & AI which is designed for working professionals and offers 450+ hours of rigorous training, 30+ case studies & assignments, IIIT-B Alumni status, 5+ practical hands-on capstone projects & job assistance with top firms.
Best Machine Learning and AI Courses Online
In-demand Machine Learning Skills
Popular AI and ML Blogs & Free Courses
Frequently Asked Questions (FAQs)
1. How does the min-max algorithm work?
There are two participants in the AI min max algorithm: Maximiser and Minimizer. Both of these players compete in the game, with one attempting to achieve the highest score or maximum benefit and the other attempting to achieve the lowest score or minimum benefit. Because each game board includes an assessment score, the Maximiser will choose the highest value, while the Minimizer will choose the lowest value with counter movements. When the Maximiser does have the upper hand, the board score will be positive, but when the Minimizer seems to have the upper hand, the board score will be negative.
2. What are the properties of MinMax algorithm in AI?
The algorithm is complete, which means that a solution will almost certainly be discovered in a finite search tree. It is ideal if both players are performing at their best. The temporal complexity of the algorithm for the game tree is O(bm), in which b is the branching factor & m is the maximum depth of the tree, due to Depth-First Search (DFS). This algorithm, like DFS, has a space complexity of O(bm).
3. What are the limitations of minimax algorithm?
The process of obtaining the goal is slower due to the large branching factor. The engine's performance and efficiency suffer as a result of evaluating and searching all conceivable nodes and branches. Both players have an excessive number of options from which to choose. It is impossible to investigate the complete tree if there is a time and space constraint. The algorithm, however, can be enhanced by Alpha-Beta Pruning.
4. How do you do a min-max algorithm?
The Mini-max algorithm is a recursive method used in decision-making and game theory to minimize the possible loss for a worst-case scenario, maximizing the minimum gain by simulating all possible moves and their outcomes to determine the best move.
5. What is the min-max algorithm in Tic-Tac-Toe?
The Mini-max algorithm in Tic-Tac-Toe is a recursive strategy used to minimize the possible loss in a worst-case scenario by assuming that the opponent also plays optimally, thus choosing moves that maximize a player's minimum guaranteed payoff.
6. What is the min-max sorting algorithm?
The Min-Max sorting algorithm sorts an array by repeatedly finding the minimum and maximum elements, placing them at the beginning and end of the array, and then recursively sorting the remaining elements in between.
7. What is min-max complexity?
Min-max complexity refers to the computational complexity of algorithms designed to find both the minimum and maximum values in a dataset. An optimal algorithm can achieve this in O(n)O(n)O(n) time, meaning it processes each element only once, thus performing both tasks with minimal comparisons.
RELATED PROGRAMS