- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
7 Most Used Machine Learning Algorithms in Python You Should Know About
Updated on 08 January, 2024
5.43K+ views
• 12 min read
Machine Learning is a branch of Artificial Intelligence (AI) which deals with the computer algorithms being used on any data. It focuses on automatically learning from the data being fed into it and it gives us results by improving on the previous predictions every time.
Top Machine Learning and AI Courses Online
Top Machine Learning Algorithms Used in Python
Below are some of the top machine learning algorithms used in Python, along with code snippets shows their implementation and visualizations of classification boundaries.
1. Linear Regression
Linear regression is one of the most commonly used supervised machine learning technique. As its name suggests, this regression tries to model the relationship between two variables using a linear equation and fitting that line to the observed data. This technique is used to estimate real continuous values like total sales made, or cost of houses.
The line of best fit is also called the regression line. It is given by the following equation:
Y = a*X + b
where Y is the dependent variable, a is the slope, X is the independent variable and b is the intercept value. The coefficients a and b are derived by minimizing the square of the difference of that distance between the various data points and the regression line equation.
# synthetic dataset for simple regression
from sklearn.datasets import make_regression
plt.figure()
plt.title( ‘Sample regression problem with one input variable’ )
X_R1, y_R1 = make_regression( n_samples = 100, n_features = 1, n_informative = 1, bias = 150.0, noise = 30, random_state = 0 )
plt.scatter( X_R1, y_R1, marker = ‘o’, s = 50 )
plt.show()
Enrol for the Machine Learning Course from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.
from sklearn.linear_model import LinearRegression
X_train, X_test, y_train, y_test = train_test_split( X_R1, y_R1,
random_state = 0 )
linreg = LinearRegression().fit( X_train, y_train )
print( ‘linear model coeff (w): {}’.format( linreg.coef_ ) )
print( ‘linear model intercept (b): {:.3f}’z.format( linreg.intercept_ ) )
print( ‘R-squared score (training): {:.3f}’.format( linreg.score( X_train, y_train ) ) )
print( ‘R-squared score (test): {:.3f}’.format( linreg.score( X_test, y_test ) ) )
Output
linear model coeff (w): [ 45.71]
linear model intercept (b): 148.446
R-squared score (training): 0.679
R-squared score (test): 0.492
The following code will draw the fitted regression line on the plot of our data points.
plt.figure( figsize = ( 5, 4 ) )
plt.scatter( X_R1, y_R1, marker = ‘o’, s = 50, alpha = 0.8 )
plt.plot( X_R1, linreg.coef_ * X_R1 + linreg.intercept_, ‘r-‘ )
plt.title( ‘Least-squares linear regression’ )
plt.xlabel( ‘Feature value (x)’ )
plt.ylabel( ‘Target value (y)’ )
plt.show()
Preparing a Common Dataset For Exploring Classification Techniques
The following data is going to be used to show the various classification algorithms which are most commonly used in machine learning in Python.
The UCI Mushroom Data Set is stored in mushrooms.csv.
%matplotlib notebook
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.model_selection import train_test_split
df = pd.read_csv( ‘readonly/mushrooms.csv’ )
df2 = pd.get_dummies( df )
df3 = df2.sample( frac = 0.08 )
X = df3.iloc[:, 2:]
y = df3.iloc[:, 1]
pca = PCA( n_components = 2 ).fit_transform( X )
X_train, X_test, y_train, y_test = train_test_split( pca, y, random_state = 0 )
plt.figure( dpi = 120 )
plt.scatter( pca[y.values == 0, 0], pca[y.values == 0, 1], alpha = 0.5, label = ‘Edible’, s = 2 )
plt.scatter( pca[y.values == 1, 0], pca[y.values == 1, 1], alpha = 0.5, label = ‘Poisonous’, s = 2 )
plt.legend()
plt.title( ‘Mushroom Data Set\nFirst Two Principal Components’ )
plt.xlabel( ‘PC1’ )
plt.ylabel( ‘PC2’ )
plt.gca().set_aspect( ‘equal’ )
We will use the function defined below to get the decision boundaries of the different classifiers we’ll use on the mushroom dataset.
def plot_mushroom_boundary( X, y, fitted_model ):
plt.figure( figsize = (9.8, 5), dpi = 100 )
for i, plot_type in enumerate( [‘Decision Boundary’, ‘Decision Probabilities’] ):
plt.subplot( 1, 2, i + 1 )
mesh_step_size = 0.01 # step size in the mesh
x_min, x_max = X[:, 0].min() – .1, X[:, 0].max() + .1
y_min, y_max = X[:, 1].min() – .1, X[:, 1].max() + .1
xx, yy = np.meshgrid( np.arange( x_min, x_max, mesh_step_size ), np.arange( y_min, y_max, mesh_step_size ) )
if i == 0:
Z = fitted_model.predict( np.c_[xx.ravel(), yy.ravel()] )
else:
try:
Z = fitted_model.predict_proba( np.c_[xx.ravel(), yy.ravel()] )[:, 1]
except:
plt.text( 0.4, 0.5, ‘Probabilities Unavailable’, horizontalalignment = ‘center’, verticalalignment = ‘center’, transform = plt.gca().transAxes, fontsize = 12 )
plt.axis( ‘off’ )
break
Z = Z.reshape( xx.shape )
plt.scatter( X[y.values == 0, 0], X[y.values == 0, 1], alpha = 0.4, label = ‘Edible’, s = 5 )
plt.scatter( X[y.values == 1, 0], X[y.values == 1, 1], alpha = 0.4, label = ‘Posionous’, s = 5 )
plt.imshow( Z, interpolation = ‘nearest’, cmap = ‘RdYlBu_r’, alpha = 0.15, extent = ( x_min, x_max, y_min, y_max ), origin = ‘lower’ )
plt.title( plot_type + ‘\n’ + str( fitted_model ).split( ‘(‘ )[0] + ‘ Test Accuracy: ‘ + str( np.round( fitted_model.score( X, y ), 5 ) ) )
plt.gca().set_aspect( ‘equal’ );
plt.tight_layout()
plt.subplots_adjust( top = 0.9, bottom = 0.08, wspace = 0.02 )
2. Logistic Regression
Unlike linear regression, logistic regression deals with the estimation of discrete values (0/1 binary values, true/false, yes/no). This technique is also called logit regression. This is because it predicts the probability of an event by using a logit function to train the given data. It’s value always lies between 0 and 1 (since it is calculating a probability).
The log odds of the results is constructed as a linear combination of the predictor variable as follows:
odds = p / (1 – p) = probability of event occurring or probability of event not occurring
ln( odds ) = ln( p / (1 – p) )
logit( p ) = ln( p / (1 – p) ) = b0 + b1X1 + b2X2 + b3X3 + … + bkXk
where p is the probability of presence of a characteristic.
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit( X_train, y_train )
plot_mushroom_boundary( X_test, y_test, model )
Get artificial intelligence certification online from the World’s top Universities – Masters, Executive Post Graduate Programs, and Advanced Certificate Program in ML & AI to fast-track your career.
3. Decision Tree
This is a very popular algorithm that can be used to classify both continuous and discrete variables of data. At every step, the data is split into more than one homogenous sets based on some splitting attribute/conditions.
from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier( max_depth = 3 )
model.fit( X_train, y_train )
plot_mushroom_boundary( X_test, y_test, model )
4. SVM
SVM is short for Support Vector Machines. Here the basic idea is the classify the data points by using hyperplanes for separation. The goal is the find out such a hyperplane that has the maximum distance (or margin) between the data points of both the classes or categories.
We choose the plane in such a way to take care of classifying unknown points in the future with the highest confidence. SVMs are famously used because they give high accuracy while taking up very less computational power. SVMs can also be used for regression problems.
from sklearn.svm import SVC
model = SVC( kernel = ‘linear’ )
model.fit( X_train, y_train )
plot_mushroom_boundary( X_test, y_test, model )
Check out all trending Python tutorial concepts in 2024.
5. Naïve Bayes
As the name suggests, Naïve Bayes algorithm is a supervised learning algorithm based on the Bayes Theorem. Bayes Theorem uses conditional probabilities to give you the probability of an event based on some given knowledge.
Where,
P (A | B): The conditional probability that event A occurs, given that event B has already occurred. (Also called posterior probability)
P(A): Probability of event A.
P(B): Probability of event B.
P (B | A): The conditional probability that event B occurs, given that event A has already occurred.
Why is this algorithm named Naïve, you ask? This is because it assumes that all occurrences of events are independent of each other. So each feature separately defines the class a data point belongs to, without having any dependencies among themselves. Naïve Bayes is the best choice for text categorizations. It will work sufficiently well with even small amounts of training data.
from sklearn.naive_bayes import GaussianNB
model = GaussianNB()
model.fit( X_train, y_train )
plot_mushroom_boundary( X_test, y_test, model )
5. KNN
KNN stands for K-Nearest Neighbours. It is a very wide used supervised learning algorithm which classifies the test data according to its similarities with the previously classified training data. KNN does not classify all data points during training. Instead, it just stores the dataset and when it gets any new data, it then classifies those data points based on their similarities. It does so by calculating the Euclidean distance of the K number of nearest neighbours (here, n_neighbors) of that data point.
from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier( n_neighbors = 20 )
model.fit( X_train, y_train )
plot_mushroom_boundary( X_test, y_test, model )
6. Random Forest
Random forest is a very simple and diverse machine learning algorithm that uses a supervised learning technique. As you can sort of guess from the name, random forest consists of a large number of decision trees, acting as an ensemble. Each decision tree will figure out the output class of the data points and the majority class will be chosen as the model’s final output. The idea here is that more trees working on the same data will tend to be more accurate in results than individual trees.
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier()
model.fit( X_train, y_train )
plot_mushroom_boundary( X_test, y_test, model )
7. Multi-Layer Perceptron
Multi-Layer Perceptron (or MLP) is a very fascinating algorithm coming under the branch of deep learning. More specifically, it belongs to the class of feed-forward artificial neural networks (ANN). MLP forms a network of multiple perceptrons with at least three layers: an input layer, output layer and hidden layer(s). MLPs are able to distinguish between data that are non-linearly separable.
Also Read: Python Project Ideas & Topics
Each neuron in the hidden layers uses an activation function to proceed to the next layer. Here, the backpropagation algorithm is used to actually tune the parameters and hence train the neural network. It can mostly be used for simple regression problems.
from sklearn.neural_network import MLPClassifier
model = MLPClassifier()
model.fit( X_train, y_train )
plot_mushroom_boundary( X_test, y_test, model )
Popular AI and ML Blogs & Free Courses
Conclusion
We can conclude that different machine learning algorithms yield different decision boundaries and hence different accuracy results in classifying the same dataset.
There is no way to declare anyone algorithm as the best algorithm for all kinds of data in general. Machine learning requires rigorous trial and errors for various algorithms to determine what works best for each dataset separately. The list of ML algorithms doesn’t obviously end here. There is a vast sea of other techniques which are waiting to be explored in the Scikit-Learn library of Python. Go ahead and train your datasets using all of those and have fun!
If you’re interested to learn more about decision trees, machine learning, check out IIIT-B & upGrad’s Executive PG Programme in Machine Learning & AI which is designed for working professionals and offers 450+ hours of rigorous training, 30+ case studies & assignments, IIIT-B Alumni status, 5+ practical hands-on capstone projects & job assistance with top firms.
Frequently Asked Questions (FAQs)
1. What are the prime assumptions of linear regression?
There are 4 essential assumptions for linear regression: linearity, homoscedasticity, independence, and Normality. Linearity means that the relationship between the independent variable (X) and the mean of the dependent variable (Y) is considered linear when we use linear regression. Homoscedasticity means that the variance in errors of the residual points of the graph is presumed to be constant. Independence refers to all the observations from the input data to be considered as independent from each other. Normality means that the input data distribution can be uniform or non-uniform, but it is presumed to be uniformly distributed in the case of linear regression.
2. What are the differences between a Decision tree and Random Forest?
The decision tree implements its decision-making process, using a tree-like structure that represents the possible outcomes for specific actions. Random forest uses a bundle of such decision trees to analyze the data. By this process, more data will be used by Random forest, but it helps to prevent overfitting and gives accurate results. There is a scope of overfitting in a decision tree algorithm and can provide less accurate results. A decision tree is easy to interpret as it requires fewer computations, whereas a random forest is hard to interpret due to its complex analyses.
3. What are some standard libraries used for machine learning algorithms in Python?
Python has replaced almost all other languages in machine learning due to the availability of a vast number of libraries and easy syntax rules. There are many Python libraries for machine learning such as Numpy, Scipy, Scikit-learn, Theono, TensorFlow, PyTorch, Matplotlib, Keras, Pandas, etc. Using the functions from these libraries saves a lot of time writing algorithms for each task; the processes are less time-consuming and provide efficient results. These libraries have applications like matrix processing, optimization problems, data mining, statistical analysis, computations involving tensors, object detection, neural networks, and many more.
RELATED PROGRAMS