MySQL vs. MongoDB: Difference Between SQL & MongoDB
Updated on Jul 03, 2023 | 11 min read | 5.8k views
Share:
For working professionals
For fresh graduates
More
Updated on Jul 03, 2023 | 11 min read | 5.8k views
Share:
Table of Contents
Today, we generate unprecedented volumes of data, precisely over 2.5 quintillion bytes of data every day! With each passing day, this number is only going to increase. However, the data we produce is generally raw and unstructured – it is a compilation of unorganized, random facts that lack coherence and meaning. Thus, it is essential to clean, organize, process, analyze, and contextualize the data to convert into meaningful information. This is where databases and database management systems (DBMS) enter the picture.
There are primarily two types of databases that act as a base for the many different databases we have now. They are SQL and NoSQL. Both of them are opposite binaries. Primarily, SQL served as the foundation for relational databases. Although SQL dominated the database domain for a very long time, the steady upsurge in data over the years created a need for a DBMS that can scale exponentially. This need resulted in the birth of the NoSQL database.
Following the Internet boom in the mid-90s, relational databases could not handle the sudden increase in the influx and generation of different data types by users around the globe. Thus, NoSQL (non-relational database) was developed to replace SQL’s organized storage with flexibility.
Today’s post is all about looking at relational and non-relational databases, with a particular focus on the difference between SQL and MongoDB.
Check out our free courses to get an edge over the competition
SQL (Structured Query Language) was developed back in the 1970s for accessing and manipulating relational databases. SQL commands are used to perform a host of functions on databases, such as updating data or retrieving the data stored in a database. The main focus of creating SQL databases was to avoid data duplication to reduce storage costs. Usually, SQL databases feature a set and complex tabular schemas. They require vertical scaling (migrating data to larger servers), which is quite expensive.
Oracle, MySQL, PostgreSQL, and Microsoft SQL Server are some of the most popular SQL databases.
Read: SQL Vs MySQL: Difference Between SQL and MySQL
Check out upGrad’s Advanced Certification in Cyber Security
NoSQL databases came into the mainstream picture in the early 2000s. They were designed for flexibility, scalability, and high-speed querying. The unique aspect of NoSQL is that it allows for frequent application updates powered by agile and DevOps best practices. Unlike SQL databases, NoSQL databases can scale horizontally across commodity servers, making it both time and cost-efficient.
The most widely used NoSQL databases are MongoDB, CouchDB, DynamoDB, Cassandra, HBase, and Amazon Neptune.
Read: SQL Interview Questions
MongoDB and MySQL lie at the two extremes of the database domain. While MongoDB is a NoSQL database that is primarily concerned with handling raw and unstructured data, MySQL is an SQL database designed for handling organized, structured data.
The main difference between MySQL vs MongoDB is that MongoDB is a NoSQL, founded in 2007 to allow efficient storage of large amounts of data, which were important for scalable use cases, in the form of documents – an important aspect of its design. The term ‘mongo’ comes from the word ‘humongous’, referring to the amount of data a business can store.
With the expansion of digital services, the volume of data required to sustain growth has become increasingly significant, leading to a demand for more adaptable database management and capabilities. MongoDB was created to meet this need for agile, data-rich database performance.
Content-serving and e-commerce sites usually employ MongoDB to take advantage of its scalability and flexibility. Businesses employ MongoDB as a high-performance database solution to rapidly update data in terms of structure and content.
Some advantages of MongoDB over MySQL include the dynamic schema design, which enables a more adaptable environment for data search, integration, coding and database development. MongoDB also allows for easy modification of fields, thereby avoiding the need for a complete overhaul or recalibration of the database when organizational or data needs change.
Moreover, businesses can benefit from the document data model, a more advanced method of accessing, storing, insuring and merging any data type using code-friendly and native data models. This approach provides greater durability and easier scalability without needing conversion mapping. It results in a more sophisticated data management experience.
MySQL is an RDBMS hosted, managed, and offered by the Oracle Corporation. It uses SQL for communicating with the database and accessing stored data. Like all relational databases, MySQL stores data in tables, within columns and rows. In MySQL, the database schema needs to be pre-defined. One also has to set the rules determining the relationship between fields in the tables within a database.
MongoDB is a NoSQL database wherein data is stored in the form of JSON documents. It uses MongoDB Query Language (MQL) to access data. All the documents that hold related information are stacked together in MongoDB. You need not declare the structure of documents to the database system since they are self-describing. The fields usually vary from document to document.
Now, let’s focus on the other aspects of the difference between MongoDB vs. MySQL.
Data storage
MySQL stores data in a tabular format. The tables contain columns that represent the attribute, and rows denote specific records. On the other hand, MongoDB stores data in collections that are similar to tables. However, these collections consist of multiple documents in JSON format having key-value.
In MySQL, different tables relate to each other via primary keys or foreign keys. For instance, in a database containing employee records, the EmployeeID column is the “Employee” table’s primary key. However, it will function as the foreign key in the “Payments” table. This defined relational rule ensures that the Employee table does not contain any entry regarding payments. Hence the name relational database.
In MongoDB, there’s no need to build such a relationship between the unstructured data contained in the collections. This is what makes it a non-relational database.
Architecture
Like any SQL database, MySQL follows the ACID (Atomicity, Consistency, Isolation, and Durability) theorem. All four properties ensure that transactions occur consistently and reliably in the database.
On the contrary, MongoDB is governed by the principles of the CAP (Consistency, Availability, and Partition) theorem. The CAP approach focuses more on the availability of data in the database.
Thus, while MySQL ensures secure and reliable transactions, MongoDB assures high availability of data.
Checkout: SQL Project Ideas
Scalability
As we mentioned earlier, SQL databases can scale only vertically. This means, to scale MySQL, you need to increase the memory size, disk space, and computing power of the server. As the database’s size increases, high query volume, and vertical scaling can lead to increased costs.
Unlike MySQL, MongoDB supports horizontal scaling, wherein instead of increasing the memory size or computation power of the server, you can add a new server for scalability. This is less expensive since incorporating a cluster of low-cost commodity hardware is a cost-effective option to support high query volumes.
upGrad’s Exclusive Software Development Webinar for you –
SAAS Business – What is So Different?
Schema
MySQL has a pre-defined schema that dictates data compliance. You need to define the number of columns in a table and its data type while creating the table. Any data that you wish to store in the table must match the defined structure, failing which, it shows an error.
MongoDB does not require you to pre-define schemas. You can store varied data types in a collection without any hassle. This feature is extremely useful in the present scenario since most of the data generated today is unstructured and cannot be saved in SQL databases.
Query
In MySQL, you can write queries using SQL. The biggest advantage of SQL queries is that they are user-friendly. Like most other relational databases, MySQL also follows ANSI SQL standards. You can use SQL queries to perform advanced analytics operations, including joins, merge, and data aggregation. Thus, SQL is an excellent analytics tool.
Although MongoDB lacks the support for traditional SQL-like queries, it does support document querying. However, this being a developing feature has many limitations. For instance, unlike MySQL, MongoDB does not support joins, which is pivotal for collecting data from disparate sources.
While discussing the differences, we also need to acknowledge the range of similarities between the two. The primary similarity is that they are both database management systems, essentially information networks for digital spaces and websites. They build the foundation of web applications by storing data on a computer system.
Both MongoDB and MySQL can support Java, Python, Server-side PHP and Node.js languages via drivers or interfaces. These database management systems allow companies to alter, distribute or deploy cloud-native applications.
MongoDB and MySQL were originally both developed as open-source databases, allowing anyone to freely use and distribute the code.
However, the main MongoDB and MySQL difference emerges in how each is designed.
Choosing MySQL or MongoDB depends on the nature of the data and the application’s exact requirements.
A relational database, such as MySQL, is better suited for applications requiring multi-row transactions and structured data. That makes it an excellent choice for traditional relational databases.
On the other hand, MongoDB is well-suited for applications involving real-time analytics, the Internet of Things, content management, and other applications. It is ideal for handling unstructured/structured data with fast growth potential.
There’s no clear winner in the MongoDB vs. MySQL debate. Each database boasts of unique features and advantages, while also having certain limitations. The choice between MongoDB and MySQL essentially depends on your data storage needs and scalability requirements.
If you’re interested to learn more about full-stack software development, check out upGrad & IIIT-B’s PG Diploma in Full-stack Software Development which is designed for working professionals and offers 500+ hours of rigorous training, 9+ projects, and assignments, IIIT-B Alumni status, practical hands-on capstone projects & job assistance with top firms.
We hope this helps!
Get Free Consultation
By submitting, I accept the T&C and
Privacy Policy
India’s #1 Tech University
Executive PG Certification in AI-Powered Full Stack Development
77%
seats filled
Top Resources