- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Getting Started With Negative Binomial Regression: Step by Step Guide
Updated on 27 June, 2023
7.01K+ views
• 10 min read
Table of Contents
The technique of Negative Binomial Regression is used for carrying out the modeling of count variables. The method is almost similar to the multiple regression method. However, there is the difference that in the case of Negative Binomial Regression, the dependent variable, i.e., Y, follows the negative binomial distribution. Therefore, the values of the variable can be non-negative integers such as 0, 1, 2.
Best Machine Learning and AI Courses Online
The method is also an extension of the Poisson regression that makes a relaxation in assuming that the mean is equal to the variance. One of the traditional models of binomial regression, defined as “NB2,” is based on the mixed distribution of Poisson-gamma.
The method of the Poisson regression is generalized through the addition of a variable of gamma noise. This variable has a value of mean one and also a scale parameter which is “v.”
Here are a few examples of the Negative Binomial Regression:
- The school administrators conducted a study to study the attendance behavior of the high school students from two schools. The factors that might influence the attendance behavior might include the days in which the juniors were absent from school. Also, the program in which they were enrolled.
- A researcher from a health-related study carried out a study of how many senior citizens visited a hospital in the last 12 months. The study was based on the individual’s characteristics and the health plans that the senior citizens bought.
In-demand Machine Learning Skills
Get Machine Learning Certification from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.
Example of Negative Binomial Regression
Suppose there is an attendance sheet of around 314 students from high school. The data is taken from two urban schools and stored in a file named nb_data.dta. The interesting response variable in this example is the absent days which are “daysabs.” One variable, “math,” is present, which defines the math score for every student. There is another variable which is “prog.” This variable indicates the program in which the students are enrolled.
Each of the variables has around 314 observations. Therefore, the distributions among the variables are also reasonable. Also, considering the outcome variable, the unconditional mean is lower than the variance.
Now, focus on the variable description considered in the dataset. A table tabulates the average days a student was absent from school in every program type. This suggests that the variable type program can predict the days the student was absent from school. You can also use it for predicting the outcome variable. This is because the mean value for the outcome variable varies by the variable prog. Also, the values of the variances are higher than are in each level of the variable prog. These values are called the variances and the means. The existing differences suggest that there is the presence of over-dispersion, and therefore it will be appropriate to use a negative binomial model.
A researcher can consider several analysis methods for this type of study. These methods are described below. A few of the methods of analysis that the user can use for analyzing the regression model are:
1. Negative binomial regression
The method of Negative Binomial Regression is to be used when there is overdispersed data. This means that the value of conditional variance is higher or exceeds the value of the conditional mean. The method is considered to be generalized from the Poisson regression method. This is because both the methods have the same structure of the mean. But, there is an additional parameter in the Negative binomial regression used to model the overdispersion. The confidence intervals are considered narrower than passion regression when the conditional distribution is over-dispersed from the outcome variable.
2. Poisson regression
The method of Poisson regression is used in the modeling of the count data. Many extensions can be used for modeling the count variables in the Poisson regression.
3. OLS regression
The outcomes of the count variables are log-transformed sometimes and then analyzed through the method of OLS regression. However, there are sometimes issues related to the method of OLS regression. These issues might be the data loss due to the generation of any undefined value through consideration of the log of the value zero. Also, it might be generated due to the lack of modeling the dispersed data.
4. Zero-inflated models
These types of models try to account for all the excess zeros in the model. The zero inflated negative binomial regression is usually applicable for overdispersed count outcome variables.
Analysis Using the Negative Binomial Regression
The command “nbreg” is used for estimating the model of Negative Binomial Regression. There is an “i” before the variable “prog.” The presence of “i” indicates that the variable is of type factor, i.e., categorical variable. These should be included as indicator variables in the model.
- The output of the model begins with an iteration log. It starts through the fitting of the model of Poisson, followed by a null model, and then the model of the negative binomial. The method uses the estimate of maximum likelihood and keeps on iterating until there is a change in the value of the final log. The likelihood of the log is used for the comparison of the models.
- The next information is in the header file.
- There is the information of coefficients of Negative Binomial Regression just below the header. The coefficients are generated for every variable along with the errors such as the p-values, z-scores. There is also a confidence interval of 95% for all the coefficients. The coefficient for the “math” variable is -0.006, which denotes that it is statistically significant. The result means that if there is an increase in one unit on the variable “math,” the expected log count for the absent number of days decreases by a value of 0.006. Also, the value of the 2. prog, the indicator variable, is the difference expected in the count of log between the two groups ( group 2 and reference group).
- The parameter estimation for the log transferred over-dispersion is done and then displayed with the untransformed value. In the Poisson model, the value is zero.
- There is a ratio test likelihood information below the coefficients table. The model can be further understood through the use of the commands “margins.”
Process of Doing Negative Binomial Regression Analysis in Python
The required packages for carrying out the regression process are required to be imported from Python. These packages are listed below:
- import statsmodels.api as sm
- import matplotlib.pyplot as plt
- import numpy as np
- from patsy import dmatrices
- import pandas as pd
Steps to Perform Negative Binomial Regression in Python
You will have to follow these steps to perform negative binomial regression in Python:
Step 1: Testing the Poisson regression method on the training data set
You will have to begin by setting up the regression expression. To prove that BB COUNT is the dependent value, you can use regression variables like DAY, MONTH, DAY OF WEEK, LOW T, HIGH T, and PRECIP.
expr = “””BB COUNT DAY + DAY OF WEEK + MONTH + HIGH T + LOW T + PRECIP””” expr = “””BB COUNT DAY + DAY OF WEEK + MONTH + HIGH T + LOW T + PRECIP”””
Organize the training and testing data sets’ x and y matrices with the help of Patsy.
dmatrices(expr, df train, return type=’dataframe’), y train, X train = dmatrices(expr, df train, return type=’dataframe’)
dmatrices(expr, df test, return type=’dataframe’) = y test, X test
Use the statsmodels GLM class to train the Poisson negative binomial regression model.
sm = poisson training results
family=sm.families. GLM(y train, X train, family=sm.families.
Poisson()).
fit()
This step will help you finish training the regression model.
Step 2: Fitting the auxiliary Ordinary least square regression model and finding α
Start by importing the API package into your project.
In the training set DataFrame, you will have to add the ‘BB LAMBDA’ vector.
Remember that the measurements are (n x 1). You can utilize (161 x 1). The vector is likely to be spotted in Poisson training results.mu:
df train [‘BB LAMBDA’] = poisson training results.mu
Now, add the derived column to the ‘AUX OLS DEP’ Pandas DataFrame. In this new column, you will find the values of the ordinary least square regression’s dependent variable.
df train [‘AUX OLS DEP’] = df train.apply df train. apply df train.apply (lambda x ((x[‘BB COUNT’] – x[‘BB LAMBDA’])**2 – x[‘BB LAMBDA’]) / x[‘BB LAMBDA’], axis=1) – x[‘BB LAMBDA’])
You can now employ Patsy to build the OLSR model specification. The ‘-1’ at the back of the phrase denotes “don’t use a regression intercept.”
“”AUX OLS DEP BB LAMBDA – 1″”” ols expr = “””AUX OLS DEP BB LAMBDA – 1″””
Next, follow this step to fit the OLSR model:
aux_olsr_results = smf.ols(ols_expr, df_train).
fit()
Step 3: Delivering the alpha value determined in the last step
NB 2_training_results = sm.GLM(y_train, X_train,family=sm.families.NegativeBinomial(alpha=aux_olsr_results.params[0])).fit()
Step 4: Make predictions using the trained negative binomial regression2 model
NB 2_predictions = NB 2_training_results.get_prediction(X_test)
The NB 2 model can monitor the bicycle count trends quite minutely.
Step 5: Evaluating the goodness-of-fit of the NB Regression2 model
The training summary of the NB Regression2 model will include three points of relevance for the goodness-of-fit. You should go over each of them individually. The Log-Likelihood value should be the first parameter that you consider.
Considerations for Negative Binomial Regression
There are a few things that should be considered while applying the method of Negative Binomial Regression analysis. These include:
- If there is the presence of small samples, then the Negative Binomial Regression method is not recommended.
- Sometimes there are excess zeros present which might be a cause for the overdispersion. These zeros might be generated due to the process of adding data generation. If such a type of case occurs, it is recommended to use the method of the zero-inflated model.
- If the process of data generation does not consider any zeros, then in such cases, it is recommended to use the method of the zero-truncated model.
- There is an exposure variable associated with the count data. The variable denotes the times there is a chance that the event can occur. This variable is necessary to be incorporated into the model of Negative Binomial Regression. This is done through the option of exp().
- The outcome variable cannot be any negative value in the model of the Negative Binomial Regression analysis. Also, the exposure variable cannot have the value 0.
- The command “glm” can also be used for running a Negative Binomial Regression analysis method. This can be done through the link of the log and also the family of binomials.
- The command “glm” is required for obtaining the residuals. This is to check if there are any other assumptions in the model of Negative Binomial Regression.
- There is the existence of the various measures of the pseudo-R-squared. However, every measure provides information similar to the information provided by the R-squared in the regression of OLS.
Popular AI and ML Blogs & Free Courses
Conclusion
The article discussed the topic of Negative Binomial Regression. We have seen that it is almost similar to the method of multiple regressions and is a generalized form of the Poisson distribution. There are several applications of the method. The technique can also be applied through the python programming language or in R.
Several case studies are also present that show its application in studies such as aging. Also, the classical models of regressions that can be used on the count data are the Poisson Regression, Negative Binomial Regression, and Geometric Regression. These methods belonged to the family of linear models and were included in almost all statistical packages such as the R system.
If you want to excel in machine learning and want to explore the field of data, then you can check the course Executive PG Programme in Machine Learning & AI offered by upGrad. So, if you are a working professional who dreams of being an expert in machine learning, come and gain the experience of getting trained under experts. More details can be achieved through our website. For any queries, our team can assist you promptly.
RELATED PROGRAMS