- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Probability Mass Function: Discrete Distribution & Properties
Updated on 23 November, 2022
9.16K+ views
• 6 min read
Introduction
Probability has been an important aspect when it comes to the field of Data Science. It has played a pivotal role in the lives of data analysts and data scientists. The concepts used in probability theory are a must-know for people in the Data Science domain. The statistical methods used for making certain predictions are based upon the theories of probability and statistics thus making probability a crucial part of the data science domain.
Probability gives information about occurring of a certain event under some assumptions i.e. It indicates the likelihood of an event occurring. To represent the different possible values that a random variable can take, we make use of probability distribution.
A random variable can be referred to as the different outcomes which are possible in a given situation. To illustrate, if a die is rolled, then the possible outcomes for this situation are values ranging from 1 to 6 which become the values of the random variable.
Probability Distribution can be of two types: – Discrete and Continuous. Discrete distributions are for the variables which take only a limited number of values within a range. Continuous distributions are for variables that can take an infinite number of values within a range. In this article, we will be exploring more into the discrete distribution and later into Probability Mass Function.
Discrete Distribution
The discrete distribution represents the probabilities of the different outcomes for a discrete random variable. In simple terms, it allows us to understand the pattern of the different outcomes in the random variable. It is nothing but the representation of all the probabilities of a random variable put together.
To create a probability distribution for a random variable, we need to have the outcomes of the random variable along with its associated probabilities and then we can compute its probability distribution function.
Some of the types of discrete distributions are listed as follows: –
- Binomial Distribution: – The number of outcomes in a single trial can only be two (yes or no, success or failure, etc). Example: – Tossing of a coin
- Bernoulli’s Distribution: – A special version of Binomial distribution where the number of trials conducted in the experiment is always equal to 1.
- Poisson Distribution: – It provides the probability of an event occurring a certain number of times in a specific period of time. Example: – Number of times a movie will be streamed on a Saturday night.
- Uniform Distribution: – This distribution assumes that the probability for all the outcomes in a random variable is the same. Example: – Rolling of a die (as all the sides have an equal probability of showing up).
You can refer to this link for more details on types of continuous and discrete distributions. To calculate the probability of a random variable with its value equal to some value within the range, Probability Mass Function (PMF) is used. For every distribution, the formula of probability mass function varies accordingly.
Explore our Popular Data Science Courses
For better clarity on probability mass function, let us walk through an example. Suppose we have to figure out which of the batting positions in cricket has more probability of scoring a century within a team, provided we have some related data. Now as there can be only 11 playing positions in the team, the random variable will take values ranging from 1 to 11.
Probability Mass Function, also called Discrete Density Function will allow us to find out the probability of scoring a century for each position i.e. P(X=1), P(X=2)….P(X=11). After the computation of all the probabilities, we can compute the probability distribution of that random variable.
Read our popular Data Science Articles
The general formula for probability mass function is as follows: –
PX(xk) = P(X = xk) for k = 1,2,…k
where,
X = Discrete random variable.
xk= Possible value of the random variable.
P = Probability of the random variable when it equals xk.
Many get themselves into the confusion between Probability Mass Function (PMF) and Probability Density Function (PDF). To clear this out, the probability mass function is for the discrete random variables i.e. the variables that can take a limited number of values within a range.
The probability density function is used for the continuous random variables. i.e. the variables that can take an infinite number of values in a range. The probability mass function helps in the calculation of the general statistics like mean and variance of the discrete distribution.
Earn data science certification from the World’s top Universities. Join our Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career.
upGrad’s Exclusive Data Science Webinar for you –
Properties of Probability Mass Function
- The probabilities of all the possible values of the random variable should sum up to 1. [ ∑PX(xk) = 1]
- All the probabilities have to be can either be 0 or greater than 0. [P(xk) ≥ 0]
- The probability of each event occurring ranges from 0 to 1. [1 ≥ P(xk) ≥ 0]
Top Data Science Skills to Learn
Conclusion
The concepts of probability like Probability Mass Function have been very useful in the data science domain. These concepts may not be used in every aspect of a data science project or for that matter in the entire project as well. But this does not belittle the importance of probability theory in this domain.
The applications of probability theory have provided great results not only in the data science domain but other domains of the industry also as it can help in interesting insights and decision-making which always makes it worth a try.
This article provided an overview of the importance of probability in the field of data science, introduced the basic concepts of probability like probability distribution and probability mass function. The article has mainly focused on the discrete variable terms as probability mass function is used for them. The terminologies used for the continuous variables are different, but the overall ideology of these concepts remain similar to the one explained in this article.
Frequently Asked Questions (FAQs)
1. How is a discrete probability distribution different from a continuous probability distribution?
The discrete probability distribution or simply discrete distribution calculates the probabilities of a random variable that can be discrete. For example, if we toss a coin twice, the probable values of a random variable X that denotes the total number of heads will be {0, 1, 2} and not any random value.
Bernoulli, Binomial, Hypergeometric are some examples of the discrete probability distribution.
On the other hand, the continuous probability distribution provides the probabilities of a random value that can be any random number. For example, the value of a random variable X that denotes the height of citizens of a city could be any number like 161.2, 150.9, etc.
Normal, Student’s T, Chi-square are some of the examples of continuous distribution.
2. Explain hypergeometric distribution?
The hypergeometric distribution is a discrete distribution where we consider the number of successes over the number of trials without any replacement. Such a type of distribution is useful in cases where we need to find the probability of something without replacing it.
Let us say we have a bag full of red and green balls and we have to find the probability of picking a green ball in 5 attempts but each time we pick a ball, we do not return it back to the bag. This is an apt example of the hypergeometric distribution.
3. What is the importance of probability in Data Science?
As data science is all about studying data, probability plays a key role here. The following reasons describe how probability is an indispensable part of data science:
1. It helps analysts and researchers make predictions out of data sets. These kinds of estimated results are the foundation for further analysis of the data.
2. Probability is also used while developing algorithms used in machine learning models. It helps in analysing the data sets used for training the models.
3. It allows you to quantify data and derive results such as derivatives, mean, and distribution.
4. All the results achieved using probability eventually summarizes the data. This summary also helps in the identification of existing outliers in the data sets.