- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Top 10 Python Tools Every Python Developer Should Know About [2024]
Updated on 14 February, 2024
43.21K+ views
• 7 min read
Table of Contents
It is no longer surprising to hear that Python is one of the most popular languages among Developers and in the Data Science community. While there are numerous reasons behind Python’s popularity, it is primarily because of two core reasons.
- Python has a very simple syntax – almost equivalent to the mathematical syntax – and hence, it can be easily understood and learned.
- Second, it offers extensive coverage (libraries, tools, etc.) for scientific computing and Data Science.
There are numerous reasons to use Python for data science. Today, we’ll talk about some of the most widely used Python tools by developers, coders, and Data Scientists across the world. If you are a beginner and interested to learn more about data science, check out our data science certification from top universities.
These Python tools can be convenient for many different purposes if you know how to use them right. So, without further delay, let’s look at the best Python tools out there!
Data Science Python tools
1) Scikit-Learn
Scikit-Learn is an open-source tool designed for Data Science and Machine Learning. It is extensively used by Developers, ML Engineers, and Data Scientists for data mining and data analysis. One of the greatest features of Scikit-Learn is its remarkable speed in performing different benchmarks on toy datasets.
The primary characteristics of this tool are classification, regression, clustering, dimensionality reduction, model selection, and preprocessing. It offers a consistent and user-friendly API along with grid and random searches.
2) Keras
Keras is an open-source, high-level neural network library written in Python. It is highly suited for ML and Deep Learning. Keras is based on four core principles – user-friendliness, modularity, easy extensibility, and working with Python. It allows you to express neural networks in the easiest way possible. Since Keras is written in Python, it can run on top of popular neural network frameworks like TensorFlow, CNTK, and Theano.
Must read: Learn excel online free!
3) Theano
Theano is a Python library designed explicitly for expressing multi-dimensional arrays. It allows you to define, optimize, and evaluate mathematical computations comprising multi-dimensional arrays. Some of its most unique features include its tight integration with NumPy, transparent use of GPU, efficient symbolic differentiation, speed and stability optimizations, dynamic C code generation, and extensive unit-testing, to name a few.
4) SciPy
SciPy is an open-source Python-based library ecosystem used for scientific and technical computing. It is extensively used in the field of Mathematics, Science, and Engineering. SciPy leverages other Python packages, including NumPy, IPython, or Pandas, to create libraries for common math and science-oriented programming tasks. It is an excellent tool for manipulating numbers on a computer and generate visualized results as well.
Our learners also read – free online python course for beginners!
upGrad’s Exclusive Data Science Webinar for you –
The Future of Consumer Data in an Open Data Economy
Explore our Popular Data Science Courses
Automation Testing Python tools
5) Selenium
Selenium is undoubtedly one of the best Python development tools. It is an open-source automation framework for web applications. With Selenium, you can write test scripts in many other programming languages, including Java, C#, Python, PHP, Perl, Ruby, and .Net.
Furthermore, you can perform tests from any browser (Chrome, Firefox, Safari, Opera, and Internet Explorer) in all of the three major operating systems – Windows, macOS, and Linux. You can also integrate Selenium with tools like JUnit and TestNG for managing test cases and generate reports.
6) Robot Framework
Robot Framework is another open-source generic test automation framework designed for acceptance testing and acceptance test-driven development (ATTD). It uses tabular test data syntax and is keyword-driven. Robot Framework integrates many frameworks for different test automation requirements.
You can expand the framework’s abilities by further integrating it with Python or Java libraries. Robot Framework can be used not only for web app testing but also for Android and iOS test automation.
7) TestComplete
TestComplete is an automation testing software that supports web, mobile, and desktop automation testing. However, you must acquire a commercial license to be able to use it. TestComplete also allows you to perform keyword-driven testing, just like Robot Framework. It comes with an easy-to-use record and playback feature.
It supports many scripting languages, including Python, VBScript, and C++ script. Just like Robot Framework, software testers can perform keyword-driven testing. A noteworthy feature of this Python tool is that its GUI object recognition abilities can both detect and update UI objects. This helps reduce the efforts required to maintain test scripts.
Read our popular Data Science Articles
Web Scraping Python tools
8) Beautiful Soup
Beautiful Soup is a Python library for extracting data from HTML and XML files. You can integrate it with your preferred parser to leverage various Pythonic idioms for navigating, searching, and modifying a parse tree. The tool can automatically convert incoming documents to Unicode and outgoing documents to UTF-8 and is used for projects like screen-scraping. It is a great tool that can save you hours of work.
9) LXML
LXML is a Python-based tool designed for C libraries – libxml2 and libxslt. It is highly feature-rich and one of the most easy-to-use libraries for processing XML and HTML in Python. It facilitates safe and convenient access to libxml2 and libxslt libraries by using the ElementTree API.
What’s unique is that it combines the speed and XML features of these libraries with the simplicity of a native Python API. Furthermore, it extends the ElementTree API to provide support for XPath, RelaxNG, XML Schema, XSLT, and C14N.
Also, Check out all Trending Python Tutorial Concepts in 2024.
10) Scrapy
Scrapy is an open-source and collaborative framework written in Python. Essentially, it is an application framework used for developing web spiders (the classes that a user defines) that crawl web sites and extract data from them. It is mainly used for extracting the data from websites.
Scrapy is a fast, high-level web crawling and scraping framework that can also be used for many other tasks like data mining, automated testing, etc. It can efficiently run on all three major operating systems, that is, Windows, macOS, and Linux.
Top Data Science Skills to Learn
Bonus: 11) Urllib
Urllib is a Python package that is designed for collecting and opening URLs. It has various modules and functions to work with URLs. For instance, it uses “urllib.request” for opening and reading URLs that are mostly HTTP; “urllib.error” to define the exception classes for exceptions raised by urllib.request; “urllib.parse” to define a standard interface to fragment Uniform Resource Locator (URL) strings up in components, and “urllib.robotparser” function to create a single class.
Wrapping Up
These Python tools can cover a wide range of needs and functionalities, irrespective of who is using them. Whether a Data Scientist, or a Developer, or Software Engineer, these are some of the best Python tools that are used by tech professionals all around the world.
If you’re interested to learn python & want to get your hands dirty on various tools and languages, check out Executive PG Programme in Data Science.
Frequently Asked Questions (FAQs)
1. Why do most data scientists prefer Python over other languages?
There are many languages like R and Julia that can be used for data science but Python is considered to be the best fit for it due to many reasons. Some of these reasons are mentioned below: Python is much more scalable than other languages like Scala and R. Its scalability lies in the flexibility that it provides to the programmers. It has a vast variety of data science libraries such as NumPy, Pandas, and Scikit-learn which gives it an upper hand over other languages. The large community of Python programmers constantly contributes to the language and helps the newbies to grow with Python.
2. What makes Python Anaconda so special?
Anaconda is a package manager for Python and R and is considered to be one of the most popular platforms for data science aspirants. The following are some of the reasons that get Anaconda way ahead of its competitors. Its robust distribution system helps in managing languages like Python which has over 300 libraries. It is a free and open-source platform. Its open-source community has many eligible developers that keep helping the newbies constantly. It has some AI and ML-based tools that can extract the data from different sources easily. Anaconda has over 1500 Python and R data science packages and is considered the industry standard for testing and training models.
3. Which Python libraries can be used for image processing?
Python is the most suitable language for image processing due to the feature-rich libraries that it provides. The following are some of the top Python libraries that make image processing very convenient. OpenCV is hands down the most popular and widely used Python library for vision tasks such as image processing and object and face detection. It is extremely fast and efficient since it is originally written in C++. The conversation over Python image processing libraries is incomplete without Sci-Kit Image. It is a simple and straightforward library that can be used for any computer vision task. SciPy is majorly used for mathematical computations but it is also capable of performing image processing. Face Detection, Convolution, and Image Segmentation are some of the features provided by SciPy.