- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Python List Comprehension with Examples [2023]
Updated on 11 January, 2024
6.58K+ views
• 9 min read
Table of Contents
The sequences can be constructed in a concise or a short way from already defined sequences through the use of comprehensions in python. The sequences include data structures such as list, dictionary, set, etc. The following comprehensions are supported in python:
- List Comprehensions
- Dictionary Comprehensions
- Set Comprehensions
- Generator Comprehensions
This article will focus on the list comprehensions in python and its uses. Like the list comprehension set and dictionary comprehensions in python can also be created.
Learn data science course from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career.
What is List Comprehension?
Python is a widely accepted programming language that provides the user with the ability to write easy and elegant code. List comprehension is one such distinctive feature of python which is used for creating new lists. Through the use of a single line of code, the functionality can be created.
It is not necessary that an if condition should be contained in a list comprehension, however multiple forms can be contained in the list comprehension.
Therefore, list comprehensions
- Is an elegant way for defining and the creation of a list based on lists that are existing.
- Compared to the normal functions for creating lists and the loops, the list comprehensions are much more compact and faster.
- For the code to be more user-friendly, writing of long list comprehensions should be avoided.
- While using a for loop, list comprehensions can be re-written.
Benefits of Using List Comprehension Include:
List Comprehensions are a powerful tool in Python that allows users to create lists out of existing iterable easily. They provide several advantages over standard for and while loops, making them an invaluable part of any programmer’s skill set.
Increased readability
List comprehensions make code much easier to read and understand than traditional for/while loops by condensing multiple lines of code into a single line. This allows developers to quickly identify what the purpose of the list comprehension is and how it works.
More efficient coding
Traditional for/while loops take up more lines of code, as they require at least one line per loop. List comprehensions allow for much more efficient use of code, as the whole loop is condensed into a single line. This makes code easier to maintain and debug.
Faster Execution
List comprehensions are generally faster than traditional loops due to their reduced complexity. The fewer lines of code used, the less computations the processor needs to do in order to execute it. Thus, list Python list comprehension can help speed up programs and make them more efficient.
Easy dictionary comprehension in Python
Dictionary Comprehension allows users to easily create dictionaries using existing iterables without having to write cumbersome for/while loops each time. This helps reduce development time significantly and allows developers to create complex data structures with minimal effort quickly.
Nested List Comprehension Python
Nested list comprehensions Python allow users to create more complex data structures quickly and easily while still using a single line of code. This makes programs more efficient and reduces development time by eliminating the need for multiple loops or hard-to-read nested loop constructs.
By taking advantage of the benefits of list comprehension, developers can significantly speed up their development process and produce cleaner, easier-to-read code. List comprehensions are an invaluable tool for any Python programmer’s arsenal and should be used whenever possible.
Check out all trending Python tutorial concepts in 2024.
How to create list?
Several ways exist for creating lists in the programming language python.
1. for loops
For loop can be used for creating a list. Three steps are to be followed for creating the element list.
- An empty list is to be instantiated.
- Looping is used over elements that can be iterated.
- Each element is appended to the list end.
2. map() Objects
An alternative approach i.e. map() is based on functional programming. An object is created when a function and element that is iterable is passed on to map(). The output that would be generated from the execution of the iterable element through the supplied function will be contained in the object.
Explore our Popular Data Science Courses
3. List comprehensions
Another way of making a list is through the use of list comprehension. The for loop can be re-written in a code consisting of just a single line.
Compared to the earlier methods where an empty list is created first and then the addition of the elements at the end, in this case, it simply happens in just a single line. The list and the contents are simply defined at the same time. The code used is.
There are three elements in every python list comprehensions.
- Expression: It being a member, expression is a method call or any expressions where a value is returned.
- Member: It is a value or an object in the iterable list. The value of a member is 1 in the above example.
- Iterable: it is a list, sequence, set, or other objects whose elements can be returned one at a time. Iterable is range(10) in the above example.
Python list comprehension can work well even in places that use map(). The above example can be re-written as.
The difference in using a map() and list comprehension is that a list is returned in case of list comprehension while a map object is returned in case of map().
How to Supercharge Your Comprehensions
To help you avail the most benefit of your Python list comprehension, here are some tips for creating powerful and efficient code:
Learn the Syntax
Python list and dictionary comprehensions are powerful tools for manipulating data. You need to understand their syntax to get the most out of them. Start by studying examples from other developers or apps to familiarize yourself with how they’re constructed and what they can do.
Leverage Iterables
Comprehensions work best with iterable data types, such as strings, lists and dictionaries. Take advantage of this when building your comprehensions to make the most of their capabilities.
Consider Performance
Python list and dictionary comprehensions are powerful because they can be used for a wide variety of tasks, but it’s important to consider the performance of your code. Comprehensions can help you write more efficient code by declining the number of steps needed to get a result, but they can also require more processing time than simpler methods.
Utilize Nested Comprehensions
If you’re working with multiple data types or nested collections, using nested list comprehension Python it is often easier. These allow you to write one expression containing multiple embedded loops, greatly reducing the code needed for certain operations.
upGrad’s Exclusive Data Science Webinar for you –
Conditional statements
The existing lists can be modified through the use of conditional statements in the list comprehensions. Either list or tuples, both can be modified through python list comprehensions.
Top Data Science Skills to Learn
1. Using the condition of if
Condition of ‘if’ can be used in list comprehension through the following code.
Running the above program generates the output: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
2. Using the condition of Nested IF
The list comprehension does the following checks:
- Is the element y divisible by 2 or 5?
- If both the conditions are satisfied by y then it is appended to num_list.
Also Read: Fascinating Python Applications in Real World
3. Using if-else
In the example shown above, the ten numbers, i.e. from 0 to 10 are checked by list comprehensions.
4. Using of nested loops
Output generated: [[1, 4], [2, 5], [3, 6], [4, 8]]
The transpose of the matrix is computed through the use of two loops.
- Compared to the normal nested loops, the nested loops contained in list comprehensions work differently from the other nested loops.
Syntax
The basic syntax for python list comprehension is
[expression for item in list]
Suppose we have a string and we want to iterate it through the use of list comprehension.
In the above example, it can be noticed that the ‘human’ is used as a string neither a list. Here lies the power of the python list comprehensions. Whether a string or be it a tuple, the list comprehension can identify it and work upon it like a list.
The same thing can be carried out by using the loops. But, the syntax of list comprehension cannot be followed by the loops.
Read our popular Data Science Articles
Conclusion
In this article, you learned briefly about the list comprehensions in python and its creation in various ways. With the knowledge of this comprehension, other codes may be tried upon for your tasks. The concept of python is getting a lot of attention, but it will be more valuable if you are able to use your data effectively. This can be carried out by writing clear and concise codes.
Therefore if you are willing to learn about python and its implementation in data mining, you can check the course of Executive PG Programme in Data Science offered by upGrad. The 12 months course is designed for entry-level professionals (both male and female) within 21 to 45 years of age and is India’s first NASSCOM certified PGP. With over 400+ hours of learning and hands-on experience of 14+ tools and languages, the course is designed specially to meet your dreams. Queries related to the course are most welcomed.
Frequently Asked Questions (FAQs)
1. When is a Python list preferred for storing data?
Python list is considered to be the best data structure to store the data in the following scenarios:
1. A list can be used to store various values with different data types and can be accessed just by their respective indices.
2. When you need to perform mathematical operations over the elements, a list can be used since it allows you to mathematically operate the elements directly.
3. Since a list can be resized, it can be used to store the data when you are not certain about the number of elements to be stored.
4. The list elements are easily mutable and it can also store duplicate elements, unlike set and dictionary.
2. What are the advantages of list comprehension over loop?
List comprehension provides several significant advantages over the loop. Below are some of the pros of list comprehensions:
1. List comprehension is much faster and compact than the loop since it collects all the elements first and inserts them all together at once.
2. The same thing that a loop does in a block can be done in a single line using a list comprehension, making the code cleaner and more user-friendly.
3. Resolving a matrix into a vector and list filtration are some of the best examples where the list comprehensions can be seen outperforming a loop.
3. State the different ways of creating a list?
A Python list can be created in multiple ways that are mentioned below:
1. Using for loops: A for loop is the most elemental way of creating a list. A list can be created using a for loop in three simple ways:
a. Create an empty list.
b. Iterate over all the elements that are to be inserted.
c. Append each element in the list using the append() function.
2. Using map(): The map() function in Python can be used alternatively to create a list. This function accepts two parameters:
a. Function: The function to which the map passes each iterable.
b. Iterable: The element or the iterable to be mapped.
3. Using List comprehensions: This method is the most optimized of all three methods. While in the above methods an empty list has to be created first, list comprehensions allow you to insert all the elements in a list using a single line.