- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Top 5 Python Modules You Should Know in 2024
Updated on 04 January, 2024
9K+ views
• 7 min read
Python is a programming language that has won hearts in the world over. From the coding community to the Data Science community, Python is an absolute favourite of all. The reason for its popularity is that Python comes loaded with a wide range of libraries and modules that make development a hassle-free task.
While we’ve previously talked about Python libraries at length, today, we’ll focus on Python modules.
What are Python Modules?
In simple words, a Python module is a Python object consisting of arbitrarily named attributes that can be used for both binding and reference. Essentially, a module can define functions, classes, and variables. Modules help you to organize Python code logically. By grouping related code into modules, you can make Python code more easy-to-use and understand.
In Python, you can define a module in three ways:
- You can write a module in Python.
- You can write a module in C and load it dynamically at run-time.
- You can use built-in Python modules that are intrinsically contained in the interpreter.
What is Module Search Path?
The search path refers to a list of directories that the interpreter searches before it can import a module. Let’s say, you want to execute the statement:
import mod
When the interpreter executes this statement, it will search for mod.py in a list of directories assembled from multiple sources, including:
- The directory from which you ran the input script or the current directory (provided the interpreter is running interactively).
- If the PYTHONPATH environment variable has been set, it will search the list of directories contained in it.
- The list of installation-dependent directories that are configured while installing Python.
You can access the resulting search path using the Python variable sys.path that is further produced from the sys module:
>>> import sys
>>> sys.path
[”, ‘C:\\Users\\john\\Documents\\Python\\doc’, ‘C:\\Python36\\Lib\\idlelib’,
‘C:\\Python36\\python36.zip’, ‘C:\\Python36\\DLLs’, ‘C:\\Python36\\lib’,
‘C:\\Python36’, ‘C:\\Python36\\lib\\site-packages’]
Once you import a module, you can determine its location using the __file__ attribute of the module, like so:
>>> import mod
>>> mod.__file__
‘C:\\Users\\john\\mod.py’
>>> import re
>>> re.__file__
‘C:\\Python36\\lib\\re.py’
However, keep in mind that that directory portion of the __file__ should be a directory contained in sys.path.
Now that you have understood the essence of Python modules, let’s take a look at some of the best Python modules.
Explore our Popular Data Science Courses
Check out our data science courses to upskill yourself.
Top Python Modules
1. The “import” statement
By executing an import statement in one Python source file, you can use any Python source file as a module. The syntax of the import statement is:
import module1[, module2[,… moduleN]
When you run an import statement, the interpreter will import the module provided if it is present in the search path. For instance, if you wish to import the module calc.py, you must write and execute the following command:
# importing module calc.py
import calc
print add(10,2)
On successful execution of this command, the output will be as follows:
12
An important thing to remember about Python modules is that no matter how many times you import a module, it will be loaded only once. This helps to prevent repeated module execution in the case of multiple imports.
Check out All Python tutorial concepts Explained with Examples.
2. The “from…import” statement
In Python, the “from…import” statement allows you to import specific attributes from a module. Here’s an example of the “from…import” statement:
from modname import *
# importing sqrt() and factorial from the
# module math
from math import sqrt, factorial
# if we simply do “import math”, then
# math.sqrt(16) and math.factorial()
# are required.
print sqrt(16)
print factorial(6)
On running this code, you will get:
4.0
720
Using this module, you can import all the items contained within a particular module into the current namespace.
3. The “dir()” function
In Python, dir() is a built-in function that returns a sorted list of strings containing the names of all the modules, functions, and variables that are defined in a module. Given below is an example of the dir() function:
#!/usr/bin/python
# Import built-in module random
import random
print dir(math)
On execution, this code will return the following result:
[‘BPF’, ‘LOG4’, ‘NV_MAGICCONST’, ‘RECIP_BPF’, ‘Random’,
‘SG_MAGICCONST’, ‘SystemRandom’, ‘TWOPI’, ‘WichmannHill’,
‘_BuiltinMethodType’, ‘_MethodType’, ‘__all__’,
‘__builtins__’, ‘__doc__’, ‘__file__’, ‘__name__’,
‘__package__’, ‘_acos’, ‘_ceil’, ‘_cos’, ‘_e’, ‘_exp’,
‘_hashlib’, ‘_hexlify’, ‘_inst’, ‘_log’, ‘_pi’, ‘_random’,
‘_sin’, ‘_sqrt’, ‘_test’, ‘_test_generator’, ‘_urandom’,
‘_warn’, ‘betavariate’, ‘choice’, ‘division’,
‘expovariate’, ‘gammavariate’, ‘gauss’, ‘getrandbits’,
‘getstate’, ‘jumpahead’, ‘lognormvariate’, ‘normalvariate’,
‘paretovariate’, ‘randint’, ‘random’, ‘randrange’,
‘sample’, ‘seed’, ‘setstate’, ‘shuffle’, ‘triangular’,
‘uniform’, ‘vonmisesvariate’, ‘weibullvariate’]
In the output given above, while the special string variable __file__ points to the filename from which the module was loaded, __name__ becomes the module’s name.
upGrad’s Exclusive Data Science Webinar for you –
Transformation & Opportunities in Analytics & Insights
Read our popular Data Science Articles
4. The globals() and locals() functions
You can use the globals() and locals() functions to return module names in the global and local namespaces. This, however, depends on the location from where you call the names. If you call the globals() function within another function, it will return all the names that can be accessed globally from that particular function. On the contrary, if the locals() function is called from within a function, it will produce all the names that you can access locally from the specific function.
Top Data Science Skills to Learn
5. The reload() function
Generally, when you import a module into a script, the code present at the top-level portion of a module will only be executed once. In this situation, if you wish to re-execute the top-level code in a module, the reload() function is the go-to function. This function allows you to re-import a previously imported module.
The syntax of the reload() function is as follows:
reload(module_name)
In the syntax, the module_name refers to the name of the module you wish to reload – it does not pertain to the string containing the module name. For instance, if you want to reload the hello module, you must write:
reload(hello)
Conclusion
In Python, packages and modules are interrelated. Python packages facilitate hierarchical structuring of a module namespace using dot notation. While Python packages prevent collisions (overlaps) between module names, Python modules prevent collisions between global variable names.
If you are curious to learn about data science, check out IIIT-B & upGrad’s PG Diploma in Data Science which is created for working professionals and offers 10+ case studies & projects, practical hands-on workshops, mentorship with industry experts, 1-on-1 with industry mentors, 400+ hours of learning and job assistance with top firms.
Frequently Asked Questions (FAQs)
1. What is Python Anaconda and why is it so popular?
Anaconda is a package manager for Python and R. It is considered to be one of the most popular platforms for data science aspirants. The following are some of the reasons that get Anaconda way ahead of its competitors. Its robust distribution system helps in managing languages like Python which has over 300 libraries. It is a free and open-source platform. Its open-source community has many eligible developers that keep helping the newbies constantly. It has various AI and ML-based tools that can extract the data from different sources easily. Anaconda has over 1500 Python and R data science packages and is considered to be the industry standard for testing and training models.
2. Name some of the most popular Python libraries for image processing.
Python is the most suitable language for image processing due to the feature-rich libraries that it provides. The following are some of the top Python libraries that make image processing very convenient. OpenCV is hands down the most popular and widely used Python library for vision tasks such as image processing and object and face detection. It is extremely fast and efficient since it is originally written in C++. The conversation over Python image processing libraries is incomplete without Sci-Kit Image. It is a simple and straightforward library that can be used for any computer vision task. SciPy is majorly used for mathematical computations but it is also capable of performing image processing. Face Detection, Convolution, and Image Segmentation are some of the features provided by SciPy.
3. Why do most data scientists prefer Python over other languages?
There are many languages like R and Julia that can be used for data science but Python is considered to be the best fit for it due to many reasons. Some of these reasons are mentioned below: Python is much more scalable than other languages like Scala and R. Its scalability lies in the flexibility that it provides to the programmers. It has a vast variety of data science libraries such as NumPy, Pandas, and Scikit-learn which gives it an upper hand over other languages. The large community of Python programmers constantly contributes to the language and helps the newbies to grow with Python.