- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Top 10 Python NLP Libraries [And Their Applications in 2024]
Updated on 14 February, 2024
52.32K+ views
• 9 min read
Natural Language Processing(NLP), a field of AI, aims to understand the semantics and connotations of natural human languages. It focuses on extracting meaningful information from text and train data models based on the acquired insights. The primary NLP functions include text mining, text classification, text analysis, sentiment analysis, word sequencing, speech recognition & generation, machine translation, and dialog systems, to name a few.
Thanks to the development of useful Python NLP Libraries, today, NLP is finding applications across the various parallels of the industrial landscape. In fact, NLP has now become an integral part of Deep Learning development. Extracting valuable information from free text is essential for developing chatbots, patent research & analysis, voice/speech recognition, patient data processing, and querying image content, among other use cases of NLP.
The fundamental aim of Python NLP Libraries is to simplify text preprocessing. A good NLP library should be able to correctly convert free text sentences into structured features (for example, cost per hour) that can easily be fed into ML or DL pipelines. Also, an NLP library should have a simple-to-learn API, and it must be able to implement the latest and greatest algorithms and models efficiently.
I hope you will learn a lot while working on these python projects. If you are curious about learning data science to be in the front of fast-paced technological advancements, check out upGrad & IIM-K’s Professional Certificate Program in Data Science for Business Decision Making and upskill yourself for the future.
Although there are numerous NLP libraries designed for specific NLP applications, today, we’re going to draw a comparison of the functions of the top NLP libraries in Python.
Now, let’s dive into the discussion about the top Python NLP libraries!
What is an NLP Library?
An NLP (Natural Language Processing) library is a software package or framework specifically designed to facilitate the building, implementation, and use of natural language processing tasks and applications. These Python NLP libraries often include a wide range of tools and resources for handling and interpreting human language. Text tokenization, sentiment analysis, machine translation, named entity recognition, part-of-speech tagging, and other applications can all benefit from these.
Python NLP libraries frequently contain pre-trained models and algorithms that are ready to use right out of the box or that have been adjusted for certain tasks or domains. When working on different NLP applications in domains like information retrieval, text mining, chatbots, sentiment analysis, language translation, and more, researchers, data scientists, developers, and engineers frequently employ them.
Key Components of an Python NLP Library:
- Text Processing Tools
- Statistical and Machine Learning Models
- Language Resources
- Evaluation Metrics and Tools
- Integration with Deep Learning Frameworks
Top Python NLP Libraries
1. Natural Language Toolkit (NLTK)
One of the NLTK is one of the leading platforms for building Python programs that can work with human language data. It presents a practical introduction to programming for language processing. NLTK comes with a host of text processing libraries for sentence detection, tokenization, lemmatization, stemming, parsing, chunking, and POS tagging.
NLTK provides easy-to-use interfaces to over 50 corpora and lexical resources. The tool has the essential functionalities required for almost all kinds of natural language processing tasks with Python.
2. Gensim
Gensim is a Python library designed specifically for “topic modeling, document indexing, and similarity retrieval with large corpora.” All algorithms in Gensim are memory-independent, w.r.t., the corpus size, and hence, it can process input larger than RAM. With intuitive interfaces, Gensim allows for efficient multicore implementations of popular algorithms, including online Latent Semantic Analysis (LSA/LSI/SVD), Latent Dirichlet Allocation (LDA), Random Projections (RP), Hierarchical Dirichlet Process (HDP) or word2vec deep learning.
Gensim features extensive documentation and Jupyter Notebook tutorials. It largely depends on NumPy and SciPy for scientific computing. Thus, you must install these two Python packages before installing Gensim.
FYI: Free Deep Learning Course!
3. CoreNLP
Stanford CoreNLP comprises of an assortment of human language technology tools. It aims to make the application of linguistic analysis tools to a piece of text easy and efficient. With CoreNLP, you can extract all kinds of text properties (like named-entity recognition, part-of-speech tagging, etc.) in only a few lines of code.
Since CoreNLP is written in Java, it demands that Java be installed on your device. However, it does offer programming interfaces for many popular programming languages, including Python. The tool incorporates numerous Stanford’s NLP tools like the parser, sentiment analysis, bootstrapped pattern learning, part-of-speech (POS) tagger, named entity recognizer (NER), and coreference resolution system, to name a few. Furthermore, CoreNLP supports four languages apart from English – Arabic, Chinese, German, French, and Spanish.
Best Machine Learning and AI Courses Online
4. spaCy
spaCy is an open-source NLP library in Python. It is designed explicitly for production usage – it lets you develop applications that process and understand huge volumes of text.
spaCy can preprocess text for Deep Learning. It can be be used to build natural language understanding systems or information extraction systems. spaCy is equipped with pre-trained statistical models and word vectors. It can support tokenization for over 49 languages. spaCy boasts of state-of-the-art speed, parsing, named entity recognition, convolutional neural network models for tagging, and deep learning integration.
5. TextBlob
TextBlob is a Python (2 & 3) library designed for processing textual data. It focuses on providing access to common text-processing operations through familiar interfaces. TextBlob objects can be treated as Python strings that are trained in Natural Language Processing.
TextBlob offers a neat API for performing common NLP tasks like part-of-speech tagging, noun phrase extraction, sentiment analysis, classification, language translation, word inflection, parsing, n-grams, and WordNet integration.
Check out all trending Python tutorial concepts in 2024
6. Pattern
Pattern is a text processing, web mining, natural language processing, machine learning, and network analysis tool for Python. It comes with a host of tools for data mining (Google, Twitter, Wikipedia API, a web crawler, and an HTML DOM parser), NLP (part-of-speech taggers, n-gram search, sentiment analysis, WordNet), ML (vector space model, clustering, SVM), and network analysis by graph centrality and visualization.
Pattern can be a powerful tool both for a scientific and a non-scientific audience. It has a simple and straightforward syntax – the function names and parameters are chosen in a way so that the commands are self-explanatory. While Pattern is a highly valuable learning environment for students, it serves as a rapid development framework for web developers.
Get the Machine Learning Certification online from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.
7. PyNLPl
Pronounced as ‘pineapple,’ PyNLPl is a Python library for Natural Language Processing. It contains a collection of custom-made Python modules for Natural Language Processing tasks. One of the most notable features of PyNLPl is that it features an extensive library for working with FoLiA XML (Format for Linguistic Annotation).
PyNLPl is segregated into different modules and packages, each useful for both standard and advanced NLP tasks. While you can use PyNLPl for basic NLP tasks like extraction of n-grams and frequency lists, and to build a simple language model, it also has more complex data types and algorithms for advanced NLP tasks.
In-demand Machine Learning Skills
8. Polyglot
Multilingual natural language processing (NLP) software, Polyglot, is an open-source program that supports more than 130 languages. Created by the MIT Computer Science and Artificial Intelligence Laboratory, the NLP toolkit Polyglot offers a variety of operations including named entity recognition, sentiment analysis, tokenization, and part-of-speech tagging. Due to its use of pre-trained models and embeddings to provide robust linguistic analysis across different languages, it is extremely useful for academics and developers working with multilingual datasets. Polyglot is the best option for tasks like sentiment analysis in social media data, cross-lingual information retrieval, and language recognition because of its intuitive interface and extensive linguistic coverage. You may be sure that it will constantly be upgraded and able to adapt to new linguistic issues because of its active community and ongoing development.
9. scikit-learn
Scikit-learn, a collection of many tools and methods, is the cornerstone of the Python machine-learning ecosystem. The productivity of data analysis and model construction is enhanced by this cooperatively built open-source toolkit, which has an intuitive API. Among the many diverse machine learning tasks that scikit-learn supports are model evaluation, dimensionality reduction, regression, clustering, and classification. With its well-documented interface and plethora of tutorials that accommodate users of all skill levels, it empowers both inexperienced and seasoned users accordingly.
One resource that is widely utilized in both academia and industry is scikit-learn. Both straightforward data exploration tasks and complex machine learning pipelines and predictive models depend on it. It is a vital tool for solving a variety of real-world issues in numerous industries due to its adaptability, scalability, and resilience.
10. Hugging Face Transformer
Hugging Face Transformers, a freshly published package for natural language processing, is built on top of the PyTorch and TensorFlow frameworks. Several transformer-based models, such as BERT, GPT, RoBERTa, and others, are accessible through this library, which was developed by the Hugging Face team.
The user-friendly interface and large model center of pre-trained models make them easily accessible for tasks like text categorization, question answering, language synthesis, and translation. Hugging Face Transformers provide rapid testing and deployment in various academic and industrial situations by streamlining the optimization and deployment of transformer models. Professionals in business and NLP enthusiasts looking for cutting-edge solutions always turn to this product because of its seamless integration and robust features.
Conclusion
After getting a detailed account of the functionalities of the different Python NLP libraries, we can see that although most of them can perform similar NLP tasks, each library has unique features/approaches for specific NLP applications. Mainly, the usage of these Python NLP libraries depends on the NLP problem at hand.
If you are interested to know more about natural language processing, check out our PG Diploma in Machine Learning and AI program which is designed for working professionals and more than 450 hours of rigorous training.
Python has an active community that most developers create libraries for their own purposes and later release it to the public for their benefit. Here are some of the common machine learning libraries used by Python developers. If you want to update your data science skills, check out IIIT-B’s Executive PG Programme in Data Science program.
Popular AI and ML Blogs & Free Courses
Frequently Asked Questions (FAQs)
1. Which Python library is the most user-friendly for a beginner?
If you are just starting off, you should select an NLP library that is simple to use, otherwise your confidence may suffer. As a result, if you are a beginner, the Natural Language Toolkit (NLTK) is the ideal alternative. It is a Python open-source module designed primarily for working with human languages. Since NLTK provides many essential APIs in NLP research, it is perhaps the most-used package for both novices and pros in the Natural Language Processing area.
2. What is meant by sentiment analysis and which Python NLP library is used for the same?
Understanding the meaning, tone, context, and intent of what people write may provide organizations with vital information about their current and future customers, as well as competitors. This is precisely what sentiment analysis provides. It is still a developing field, but it is an interesting one. In simple words, sentiment analysis predicts whether the provided input is positive, neutral, or negative. The Natural Language Toolkit, or NLTK, is one of the premier libraries for developing Natural Language Processing (NLP) models, making it an excellent choice for sentiment analysis.
3. Which is better in terms of speed- spaCy or NLTK?
Although both spaCy and NLTK are popular Python NLP packages, each of them offers distinct advantages and limitations. If you want to save time, spaCy is far superior to NLTK. SpaCy may be used to create information extraction and natural language comprehension systems, as well as to pre-process text for deep learning. Not only are the results supplied the quickest, but they are also the most accurate.
RELATED PROGRAMS