- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
20 Common R Interview Questions & Answers
Updated on 25 November, 2022
5.75K+ views
• 7 min read
Over the past few years, R programming language has gained significant traction in the Data Science and Machine Learning communities. This is mainly because it is a multi-purpose language that can be used for statistical analysis, data visualization, data manipulation, predictive modeling, forecast analysis, and much more.
As job opportunities surrounding R are increasing rapidly & data science courses are thriving, today, we’re going to focus on the first part of landing a job the domain – the R interview. Here is a list of the most commonly asked questions in R interviews!
1.What is R?
R is a programming language and environment specifically designed for statistical computing and graphics. It comes with an extensive catalog of statistical and graphical methods including linear regression, classification, clustering, time-series analysis, statistical inference, and ML algorithms, to name a few.
2. Name the different data structures in R.
R has four primary data structures:
- Vector – It is a sequence of data elements belonging to the same type. Members within a Vector are known as components.
- List – It is an R object that can contain elements of different types, including numbers, strings, vectors, or another list.
- Matrix – It is a two-dimensional data structure that can bind vectors of the same length. The elements within a Matrix must be of the same type – numeric, or character, or logical, or complex.
- Dataframe – It is a more generic version of a matrix, that is it can contain elements of different data types. A Dataframe combines the characteristics of Matrices and Lists like a rectangular list, and its columns usually have different data types.
3. Name the various components of the grammar of graphics?
The different components of the grammar of graphics are:
- Data layer
- Facet layer
- Themes layer
- Aesthetics layer
- Geometry layer
- Co-ordinate layer
4. How to install a package in R?
To install a package in R, you have to write this command:
install.packages(“<package_name>”)
5. How is data imported in R?
To import data in R, you have to use the R commander GUI by typing the command “Rcmdr” into the R console. There are three ways to import data in R:
You can either enter the name of the data set or choose the data set in the dialog box as you deem fit.
- You can enter the data directly using the editor of R Commander: Data->New Data Set. This works best for small to medium-sized datasets.
- You can import data from the clipboard, or a URL, or a plain text file (ASCII), or any statistical package.
Our learners also read: Free online python course for beginners!
6. What is Rmarkdown?
RMarkdown is R’s reporting tool. It allows you to create high-quality reports of R code.
There are three types of output format of Rmarkdown:
- HTML
- WORD
7. What is “t-tests()” in R?
In R, the t-test() is used to determine whether or not the means of two groups are equal to each other.
Top Data Science Skills to Learn to upskill
SL. No | Top Data Science Skills to Learn | |
1 |
Data Analysis Online Courses | Inferential Statistics Online Courses |
2 |
Hypothesis Testing Online Courses | Logistic Regression Online Courses |
3 |
Linear Regression Courses | Linear Algebra for Analysis Online Courses |
8. What are the R packages used for data imputation?
The R packages most commonly used for data imputation are:
- Mi
- MICE
- Hmisc
- Amelia
- imputeR
- missForest
Read our popular Data Science Articles
9. What is a “confusion matrix” in R?
In R, a confusion matrix is used to assess the accuracy of a developed model. It offers a cross-tabulation calculation of observed and predicted classes by using the “confusionmatrix()” function contained within the “caTools” package.
10. What is a Random Forest? How can you build and evaluate a Random Forest in R?
Random Forest is an ensemble classifier built from a combination of many decision tree models. Since it combines the results of numerous decision tree models, the result is much more accurate than those of individual models.
To build a Random Forest model in R, you must have a training dataset. Then proceed by doing the following:
First, segregate the dataset into the training set and test set->
- Now, build the Random Forest model on the train set->
- Finally, predict the Random Forest model on the test set->
11. What is ShinyR?
ShinyR is an R package that allows for easy and secure development of interactive web apps directly using R.
With ShinyR, you can host standalone apps on a webpage, or you can also embed them in Rmarkdown documents. Also, you can extend your shiny apps to work with CSS themes, JavaScript actions, and HTML widgets.
Explore our Popular Data Science Certifications
12. Name the packages used for data mining in R.
The R packages used for data mining are:
- Rpart and caret
- Data.table
- Forecast
- GGplot
- Arules
- tm
13. What are the purposes of Logistic Regression and Poisson Regression?
While Logistic Regression helps to predict the binary outcome from the given set of continuous predictor variables, Poisson Regression is used to predict the outcome variable representing “counts” from the given set of continuous predictor variables.
14. How are missing values represented in R?
In R, the missing values are represented by NA (Not Available) function. However, for impossible values, NaN (not a number) is used.
15. Which function is used for adding datasets in R?
In R, the “rbind” function is used to join two dataframes or datasets. However, the two dataframes/datasets must contain variables of the same type.
16. How do you save data in R?
While there are many ways to save data in R, the most efficient way to do it is:
Data > Active Data Set > Export Active Data Set
After this, you will see a dialogue box appear before you. When you click on that dialogue box, you can save your data like you normally would.
17. What are the sorting algorithms in R?
R has five types of sorting algorithms:
- Selection Sort
- Bucket Sort
- Bubble Sort
- Merge Sort
- Quick Sort
upGrad’s Exclusive Data Science Webinar for you –
ODE Thought Leadership Presentation
18. What is a White Noise model?
A White Noise (WN) model is a time series model. It is the simplest way of depicting a stationary process.
A WN model comprises of:
- A fixed constant mean
- A fixed constant variance
- No correlation over time
19. Name the import functions in R.
The different import functions in R include:
- read.csv()->
- read_sas()->
- read_excel()->
- read_sav()->
20. Name the functions used for debugging in R.
The functions used for debugging in R are:
- traceback()
- debug()
- browser()
- trace()
- recover()
So, there you go! These are some of the most commonly asked R interview questions. Hope this will help you break the ice and steadily dig into the language as you go.
Happy learning!
Frequently Asked Questions (FAQs)
1. What are data structures in R?
Data structures are the containers that store the data to use it efficiently. Primarily, R language has 4 data structures: Vector is a dynamically allocated data structure that acts as a container and stores the values with similar data types. Data values stored in a vector are known as components. A list can be considered as an R object that can store data values of multiple data types such as integers, strings, characters, or another list. The Matrix is a grid-like data structure that binds vectors of the same length. It is a 2-D data structure and all the elements within it must be of the same data type. A data frame is similar to a matrix except it is more generic. It can hold values with different data types such as integers, strings, and characters. It shows the combination of the characteristics of a list and a matrix.
2. What is random forest?
Random Forest is an ensemble classifier. As the name suggests, it constructs and binds multiple decision trees to improve the prediction accuracy of the model. Each observation is provided to each decision tree and it is non-linear in nature. A training dataset is necessary in order to build a random forest in R. Once you gather the training dataset, there are two prominent steps that must be followed in order to achieve the random forest: Divide the dataset into the training dataset and test dataset. Use the training dataset to construct the random forest and use the test dataset to predict the random forest model.
3. What is ShinyR and what is its significance?
ShinyR is an open-source package of R language that provides a powerful web framework that is used to develop interactive web applications and projects. With ShinyR, you can convert your analyses into web applications without prominent web technologies like HTML, CSS, or JavaScript. Despite being such a powerful tool, it is easy to learn and imply. The apps developed with ShinyR can be extended to be used efficiently with HTML widgets, CSS themes, and JavaScript actions. Also, with ShinyR, you can host standalone apps on a webpage, or you can also embed them in Rmarkdown documents.