- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Recurrent Neural Network in Python: Ultimate Guide for Beginners
Updated on 30 June, 2023
1.31K+ views
• 10 min read
Table of Contents
When you need to process sequences – daily stock prices, sensor measurements, etc. – in a program, you need a recurrent neural network (RNN).
RNNs are a sort of Neural Network where the output from one step is transferred as input to the new step. In conventional neural systems, all the data sources and outputs are autonomous of one another. However, in cases like when it is required to anticipate the following expression of a sentence, the previous words are required, and consequently, there is a need to recollect the past words.
This is where RNN comes into the picture. It created a Hidden Layer to solve these issues. The fundamental and most significant element of RNN is Hidden state, which remembers some data about a sequence.
RNNs have been generating accurate results in some of the most common real-world applications: Because of their ability to handle text effectively, RNNs are generally used in Natural Language Processing (NLP) tasks.
- Speech recognition
- Machine translation
- Music composition
- Handwriting recognition
- Grammar learning
This is why RNNs have gained immense popularity in the deep learning space.
Now let’s see the need for recurrent neural networks in Python.
Get Machine Learning Certification online from the World’s top Universities – Masters, Executive Post Graduate Programs, and Advanced Certificate Program in ML & AI to fast-track your career.
What is the Need for RNNs in Python?
To answer this question, we first need to address the problems associated with a Convolution Neural Network (CNN), also called vanilla neural nets.
The major problem with CNNs is that they can only work for pre-defined sizes, i.e. if they accept fixed-size inputs, they also give out fixed-size outputs.
Whereas, with RNNs, this problem is easily taken care of. RNNs allow developers to work with variable-length sequences for both inputs as well as outputs.
Below is an illustration of what RNNs look like:
Source: Andrej Karpathy
Here, the red color denotes inputs, green RNNs, and blue outputs.
Let’s understand each in detail.
One-to-one: These are also called plain or vanilla neural networks. They work with fixed input size to fixed output size and are independent of previous inputs.
Example: Image classification.
One-to-many: While the information as input is of fixed size, the output is a sequence of data.
Example: Image captioning (image is input, and output is a set of words).
Many-to-one: Input is a sequence of information and output is of a fixed size.
Example: Sentiment analysis (input is a set of words and output tells whether the set of words reflects a positive or negative sentiment).
Many-to-many: Input is a sequence of information and output is a sequence of data.
Example: Machine translation (RNN reads a sentence in English and gives an output of the sentence in the desired language).
Sequence processing with variable lengths makes RNNs so useful. Here’s how:
- Machine Translation: The best example of this is Google Translate. It works on many-to-many RNNs. As you know, the original text is input to an RNN, which yields translated text.
- Sentiment Analysis: You know how Google segregates negative reviews from the positive ones? It is achieved by a many-to-one RNN. When the text is fed into the RNN, it gives the output, reflecting the class in which the input lies.
Now let’s see how RNNs work.
Our learners also read: Top Python Free Courses
RNNs in Python: Advancements and Applications
Long Short-Term Memory (LSTM)
Recurrent neural network in python have evolved with the introduction of advanced architectures such as LSTM and GRUs. These variants address the vanishing gradient problem often encountered in traditional Recurrent neural network in python, enabling better retention and utilization of long-term dependencies in sequences. LSTM and GRU units incorporate gating mechanisms that selectively retain or discard information, resulting in improved performance on tasks that require long-range dependencies.
Natural Language Processing (NLP) Applications
RNN python code, particularly in combination with LSTM python or GRU units, have revolutionized the field of Natural Language Processing (NLP). They have been widely adopted for tasks such as sentiment analysis, machine translation, text generation, named entity recognition, and language modeling. RNNs excel in capturing contextual information and understanding the sequential nature of text, making them suitable for applications that involve language understanding and generation.
Speech Recognition and Voice Processing
RNNs have played a crucial role in advancing speech recognition systems. By training on large speech datasets and leveraging architectures such as Connectionist Temporal Classification (CTC) or hybrid models with Hidden Markov Models (HMMs), RNNs can transcribe spoken language into written text with high accuracy. This technology has enabled significant advancements in virtual assistants, voice-controlled systems, transcription services, and language processing in audio and video content. LSTM code in python can be used to develop powerful speech recognition systems.
Time Series Analysis and Forecasting
RNNs have proven effective in time series analysis, where they can model and forecast patterns in data sequences. Stock price prediction, energy consumption forecasting, and weather prediction are examples of domains where RNNs have demonstrated their utility. By leveraging the temporal dependencies in sequential data, RNN python code can capture complex patterns and make accurate predictions, enabling better decision-making and resource planning in various industries.
Computer Vision Applications
RNNs have been successfully applied to computer vision tasks, such as image captioning and video analysis. By combining Convolutional Neural Networks (CNNs) for visual feature extraction with RNNs for language modeling, systems can generate descriptive captions for images and videos. This technology has practical applications in autonomous vehicles, surveillance systems, content recommendation engines, and accessibility tools for visually impaired individuals. LSTM code in python are also useful in creating powerful image and video captioning models.
Python Libraries for RNNs
Python provides a rich ecosystem of deep learning libraries that facilitate the implementation and training of RNN models. TensorFlow, PyTorch, and Keras are popular libraries that offer comprehensive support for building and training RNN architectures. These libraries provide pre-implemented RNN variants, including LSTM python and GRU units, making it easier for researchers and practitioners to develop and experiment with RNN models.
Advancements and Future Directions
The field of RNNs is continuously evolving, with ongoing research and development focusing on improving model architectures, training techniques, and efficiency. Transformer models initially introduced for machine translation, have gained attention for their ability to capture long-range dependencies more effectively than traditional RNNs. Researchers are also exploring techniques such as attention mechanisms, sparse representations, and unsupervised pre-training to enhance the performance and capabilities of RNNs.
Recurrent Neural Networks in Python (RNNs) have emerged as a powerful tool for sequence processing tasks, offering the ability to model dependencies and patterns in sequential data.
How do RNNs Work?
It’s best to understand the working of a recurrent neural network in Python by looking at an example.
Let’s suppose that there is a deeper network containing one output layer, three hidden layers, and one input layer.
Just as it is with other neural networks, in this case, too, each hidden layer will come with its own set of weights and biases.
Explore our Data Science Online Certifications
For the sake of this example, let’s consider that the weights and biases for layer 1 are (w1, b1), layer 2 are (w2, b2), and layer 3 are (w3, b3). These three layers are independent of each other and do not remember the previous results.
Now, here’s what the RNN will do:
- It will convert the independent activations into dependent ones by making all the layers contain the same weights and biases. This will, in turn, reduce the complexity of increasing parameters and remembering each of previous results by giving the output as input to the next hidden layer.
- Thus, all three layers will be intertwined into a single recurrent layer to contain the same weights and biases.
- To calculate the current state, you can use the following formula:
Read our popular Data Science Articles
upGrad’s Exclusive Data Science Webinar for you –
Watch our Webinar on How to Build Digital & Data Mindset?
Where,
= current state
= previous state
= input state
- To apply the Activation function (tanh), use the following formula:
Where,
= weight at the recurrent neuron
= weight at input neuron
- To calculate output, use the following formula:
Where,
= output
= weight at the output layer
Here’s a step-by-step explanation of how an RNN can be trained.
- At one time, input is given to the network.
- Now, you need to calculate its current state using the current input set and the previous state.
- The current will become for the next step of the time.
- You can go as many time steps as you want and combine the data from all the previous states.
- As soon as all time steps are completed, use the final current state to calculate the final output.
- Compare this output to the actual output, i.e. the target output and the error between the two.
- Propagate the error back to the network and update the weights to train the RNN.
Top Data Science Skills You Should Learn
Conclusion
To conclude, I would first like to point out the advantages of a Recurring Neural Network in Python:
- An RNN can remember all the information it receives. This is the characteristic that is most used in series prediction as it can remember the previous inputs.
- In RNN, the same transition function with the same parameters can be used at every time step.
It’s critical to understand that the recurrent neural network in Python has no language understanding. It is adequately an advanced pattern recognition machine. In any case, unlike methods like Markov chains or frequency analysis, the RNN makes predictions dependent on the ordering of components in the sequence.
Basically, if you say that people are just extraordinary pattern recognition machines and, in this manner, the recurrent neural system is just acting like a human-machine.
The uses of RNNs go a long way past content generation to machine translation, image captioning, and authorship identification. Even though RNNs cannot possibly replace humans, it’s possible that with all the more training information and a bigger model, a neural system would have the option to integrate new, sensible patent abstracts.
Also, If you’re interested to learn more about Machine learning, check out IIIT-B & upGrad’s Executive PG Programme in Machine Learning & AI which is designed for working professionals and offers 450+ hours of rigorous training, 30+ case studies & assignments, IIIT-B Alumni status, 5+ practical hands-on capstone projects & job assistance with top firms.
Frequently Asked Questions (FAQs)
1. Is CNN faster than RNN?
If we look at the computation time of both CNN and RNN, CNN is found to be very fast (~ 5x) as compared to RNN. Let us try to understand this in a better way with an example.
If a restaurant review is: ‘The service has been incredibly slow, and I am pretty much disappointed with this restaurant. The food quality was also mediocre.’ Here, there is sequential data present in the statement, where you might be trying to find out whether the sentiments are good or bad. The CNN model will be able to make the computations faster over here as it would be looking at only certain phrases, such as 'incredibly slow,' 'mediocre,' and 'disappointed.' Here, RNN might just confuse you by looking at several other parameters. CNN is a simpler model, which makes it more efficient than RNN.
2. What are the applications of RNN?
RNNs are pretty powerful machine learning models that are being used in plenty of areas. The main aim of RNN is to process the sequential data that is made available to it. Availability of sequential data is found in various domains. Some of its applications in different domains include Machine translation, Speech recognition, Call centre analysis, Prediction problems, Text summarization, Video tagging, Face detection, Image recognition, OCR applications, and Music composition.
3. What are some key differences between RNN and CNN?
RNNs are useful for analyzing sequential and temporal data like videos or text. On the other hand, CNN is useful for solving problems that are related to spatial data like images. In RNN, the sizes of inputs and outputs may vary, while in CNN, there is a fixed size for input as well as the resulting output. Some use cases for RNNs are machine translation, speech analysis, sentiment analysis, and prediction problems, while CNNs are useful in medical analysis, classification, and facial recognition.