- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Spiking Neural Network: Everything You Need To Know
Updated on 18 June, 2023
7.21K+ views
• 8 min read
Table of Contents
- Know How Neurons Transmit Information in the Brain
- Spiking Neural Network
- How Does a Spiking Neural Network Work?
- Application of Spiking Neural Networks:
- Advantages of SNN
- Disadvantages of SNN
- Differential Equation for membrane capacity in the LIF model
- Traditional Neural Network Vs. SNN
- Membrane Potential Behavior During a Spike
- Spiking Patterns
- Spike Trains for a Network of 3 Neurons
- Information Representation: The Spike
- Leaky Integrate and Fire
- Information Encoding
- Images to Spiketrains
- Rank Order Coding and Population Order Coding
- Dynamic Vision Sensors (DVS)
- Training the SNN
- Synaptic Time Dependent Plasticity (STDP)
- SpikeProp
- Implementation in Python
- Wrapping Up
In recent times, we heard how a neurotech startup, Neuralink, plans to improve the human brain’s computation by implanting a minuscule interface onto the brain. The electrodes in the brain-machine interfaces convert neuronal information to commands competent in controlling external systems. The biggest question that arises is how will the signals in your brain be processed.
To understand this, we need to know how neurons are structured in the brain and how they transmit information. Everyone who has been following recent machine learning trends is aware of the 2nd generation Artificial Neural Networks. Artificial Neural Networks are usually fully connected, and they deal with continuous values. ANNs have made tremendous progress in many fields.
However, they do not imitate the mechanism of the brain’s neurons. The next generation of Neural Network, the spiking neural network, aims to ease the application of machine learning in neuroscience.
Get Machine Learning Certification from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.
Know How Neurons Transmit Information in the Brain
How is information sent and received by a neuron? Neurons need to transmit information for communicating among themselves. Transmission of the information is done both within the neuron or from one neuron to another. In the human brain, the dendrites usually get information from the sensory receptors. The information received is passed to the axon through the cell body.
Popular AI and ML Blogs & Free Courses
As soon as the information reaches the axon, it moves down the axon’s entire length as an electric signal known as the action potential. On reaching the end of the axon, information needs to be transmitted to the next neuron’s dendrites, if required. There is a synaptic gap present between the axon and the dendrites of the next neuron. This gap can be filled on its own or by the help of neurotransmitters.
Spiking Neural Network
A spiking neural network(SNN) is different from traditional neural networks known in the machine learning community. Spiking neural network operates on spikes. Spikes are discrete events taking place at specific points of time. Thus, it is different from Artificial Neural Networks that use continuous values. Differential equations represent various biological processes in the event of a spike.
One of the most critical processes is the membrane capacity of the neuron. A neuron spikes when it reaches a specific potential. After a neuron spike, the potential is again re-established for that neuron. It takes some time for a neuron to return to its stable state after firing an action potential. The time interval after reaching membrane potential is known as the refractory period.
In the refractory period, triggering another action potential is quite difficult even if the excitatory inputs are strong. The sodium ion channels ensure that the action potential remains inactivated and does not reach membrane potential. Thus, a neuron does not continue a firing spree even on getting constant excitatory inputs.
The Leaky Integrate-and-Fire(LIF) model is the most common. Spiking Neural Networks are not densely connected.
How Does a Spiking Neural Network Work?
In an SNN, information is encoded in the timing and pattern of spikes generated by individual neurons. Neurons accumulate incoming signals, and when their membrane potential reaches a certain threshold, they generate a spike that propagates to connected neurons. This behavior is modeled using spiking neuron models, such as the Leaky Integrate and Fire model.
In-demand Machine Learning Skills
Application of Spiking Neural Networks:
SNNs have found applications in various domains, including robotics, speech recognition, sensor networks, and neuromorphic engineering. Their ability to process temporal information makes them particularly suitable for real-time and event-based applications.
Advantages of SNN
- Capture temporal patterns and dynamics effectively.
- Energy-efficient processing due to sparse spike representation.
- Suitable for real-time and event-driven applications.
- Robustness to noise and variations in input data.
Disadvantages of SNN
- Complexity in training and model design.
- Limited availability of mature tools and libraries.
- Computational overhead due to spike-based computations.
- Interpretability challenges due to the distributed nature of information representation.
Differential Equation for membrane capacity in the LIF model
In the spiking neural network, neurons are not discharged at every propagation cycle. The firing of neurons is only when the membrane potential reaches a certain value. As soon as a neuron is discharged, it produces a signal. This signal reaches other neurons and changes their membrane potential. Spike train provides us with increased potential to process Spatio-temporal data.
The spatial characteristic points to neurons being only connected to other neurons that are local to them. Thus, the processing of inputs works similarly to a Convolutional Neural Network that uses a filter. The temporal characteristic mentions that spikes occur at a particular time. The information lost in binary encoding is retrieved in the form of temporal information from the spikes.
This permits us to process temporal data naturally, without making cumbersome as in Recurrent Neural Networks. We have proofs showing how spiking neural networks have greater computation power than traditional artificial neural networks.
One question that may arise is why Spiking Neural Networks are not as widely used as traditional neural networks despite being computationally more powerful. The main reason behind not using SNNs frequently is a lack of training algorithms. There are unsupervised biological learning algorithms like Hebbian learning and STDP, but there is a lack of supervised training methods for SNNs.
As spike trains cannot be differentiated, we cannot train Spiking Neural Networks using conventional methods such as gradient descent without losing specific temporal information. Thus, we need to research and develop an efficient supervised learning algorithm for Spiking Neural Network to use it in real-life scenarios. It is a difficult job as we need to know thoroughly how the brain gains an understanding and transmits information between neurons.
Traditional Neural Network Vs. SNN
Unlike traditional neural networks, which operate on continuous activation values, SNNs process information based on temporal dynamics. This temporal processing enables SNNs to capture fine-grained temporal patterns, making them suitable for tasks like time-series analysis, event recognition, and sequence learning.
Membrane Potential Behavior During a Spike
During a spike, the membrane potential of a neuron undergoes rapid depolarization followed by a refractory period. This behavior allows for precise timing and synchronization of neuronal activity, facilitating complex information processing.
Spiking Patterns
A spike train denotes a two-dimensional plot of membrane potential and time having multiple spikes. The neuron discharged at a certain time interval can hold much more information.
Various spiking patterns
The parameters a,b,c, and d shown above belong to Izhikevich model neurons.
Spike Trains for a Network of 3 Neurons
In a network of three neurons, each neuron receives input spikes from the previous layer or external sources. The pattern and timing of these input spikes affect the membrane potential of the receiving neurons, determining their firing behavior and subsequent spike generation.
Information Representation: The Spike
In SNNs, information is encoded in the timing and rate of spikes. The precise timing of spikes carries essential information, allowing SNNs to capture the temporal dynamics of the input data.
Leaky Integrate and Fire
The Leaky Integrate and Fire model is a widely used spiking neuron model. It simulates the behavior of a neuron by integrating incoming signals over time and generating a spike when the membrane potential reaches a threshold. After a spike, the membrane potential is reset, accounting for leakage or dissipation of charge.
Information Encoding
SNNs employ various encoding schemes to represent information. Rank Order Coding assigns importance based on the rank order of spike timings, while Population Order Coding represents information through the relative firing rates of neuronal populations.
Images to Spiketrains
SNNs can process visual information by converting images into spike trains. This conversion allows for efficient processing of visual data, enabling tasks such as image recognition and object tracking.
Rank Order Coding and Population Order Coding
Rank Order Coding emphasizes the precise timing of spikes, enabling robust representation of temporal patterns. Population Order Coding, on the other hand, utilizes the relative firing rates of neuronal populations to encode information.
Dynamic Vision Sensors (DVS)
Dynamic Vision Sensors are specialized sensors that capture visual information in the form of temporal changes, similar to the behavior of SNNs. DVS technology complements SNNs by providing event-driven visual input, facilitating efficient processing of dynamic visual scenes.
Training the SNN
Training an SNN involves adjusting the synaptic weights between neurons to optimize network performance. Various learning rules, such as Synaptic Time Dependent Plasticity (STDP) and SpikeProp, have been developed to train SNNs effectively.
Synaptic Time Dependent Plasticity (STDP)
STDP is a learning rule that modifies the strength of synapses based on the precise timing of pre- and post-synaptic spikes. This rule enables SNNs to adapt their connections and learn from temporal patterns in the input data.
SpikeProp
SpikeProp is a learning algorithm specifically designed for training SNNs. It combines backpropagation-like techniques with STDP, enabling supervised learning in spiking neuron models.
Implementation in Python
Implementing spiking neural network Python is made easier with libraries and frameworks such as Brian2, NEST, and BindsNET. These tools provide the necessary functionality to simulate spiking neuron models and train SNNs efficiently.
Wrapping Up
The future of Spiking Neural Network is quite ambiguous. SNNs are referred to as the successors of the current neural networks, but there is a long way to go. Implementation of Spiking Neural Networks is still difficult in most practical tasks. SNNs have real-time applications in the field of image and audio processing.
However, the number of applications in these fields remains sparse. The research papers on Spiking Neural Networks are mostly theoretical. In some cases, performance analysis of SNNs is shown under a fully connected neural network. There is a huge scope of research in this domain as a major part is still unexplored.
If you are interested to learn about Machine learning in cloud, upGrad in collaboration with IIIT-Bangalore, offers the Master of Science in Machine Learning & AI. The course will equip you with the necessary skills for this role: math, data wrangling, statistics, programming, cloud-related skills, as well as ready you for getting the job of your dreams.
RELATED PROGRAMS