- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Statistical Programming in Machine Learning: Contrast Between Pyro and TFP
Updated on 24 November, 2022
6.11K+ views
• 8 min read
In Machine learning, statistical or probabilistic programming is done using 2 programming languages as shown below. Giving a brief introduction, In simple words, probabilistic programming is a tool for statistical modeling. It basically means to solve problems using a language by which we can make and design statistical models as a solution.
Top Machine Learning and AI Courses Online
It’s about applying the concepts of statistics using computer programming languages. Using probabilistic models, one can infer how our beliefs about the model’s hyperparameters can change the output.
Famous Probabilistic Programming Language’s
1. Pyro
Pyro is a probabilistic programming language (PPL) that is written in Python and is supported by Pytorch on the backend. With Pyro, we have access to deep probabilistic modeling, Bayesian modeling, and combine the best of modern deep learning algorithms. It can be installed as follows:
pip3 Install Pyro-ppl
or to install it from the source use the following commands:
git clone https://github.com/pyro-ppl/pyro.git
cd pyro
pip install .[extras]
Import Pyro using a simple line of code:
import pyro
Trending Machine Learning Skills
2. Tensor Flow Probability (TFP)
TFP is a Python library built on TensorFlow that makes possible the combination of probabilistic models and deep learning models on GPU and TPU. It can be used by anyone who wishes to incorporate domain knowledge to understand and make relevant predictions. To install TFP, type the following command in your command or anaconda prompt.
pip install –upgrade tensorflow-probability
TFP can be used in code using the following line of command:
import tensorflow_probability as tfp
The Contrast Between Pyro and TFP
1. Documentation
Documentation for Pyro and TFP is excellent and plentiful while it’s fewer on the explanation for TFP from the prospect of neural networks. In pyro, the module pyro.nn presents implementations of neural network modules that are useful in the context of deep probabilistic programming. In TFP, tfp.layers represent neural network layers with uncertainty over the functions they represent, extending TensorFlow Layers.
2. Language
The users of both TFP and Pyro write in python. However, the API involved in the case of TFP is extremely verbose. By that, I mean, we sometimes have to write more lines of code to reach a solution. That can be good at times because we have more control over the entire program and bad when it is available in a shorter form within Pyro.
3. Ramp-up Time
With Pyro, the code executes is faster and efficient, and you will require no new concepts to learn. TFP, on the other hand, requires concepts like placeholders, Variable scoping as well as sessions, thereby taking more time to execute.
4. Deployment
Both TFP and Pyro can be easily deployed on a small-scale server-side. For mobile and microcomputer or embedded deployments, TensorFlow works efficiently, unlike Pytorch. A lesser effort is required for deployment of TensorFlow in Android and IOS, compared to Pytorch.
5. Graphs
Tensorflow has better computational graph visualizations, which are indigenous when compared to other libraries like Torch and Theano. Edward is built on TensorFlow and enables features such as computational graphs, distributed training, CPU/GPU integration, automatic differentiation, and visualization with TensorBoard. Pyro, however, does not provide any demonstrative or visualization functionality.
Edward interference with TensorBoard, Source: Edward
6. Markov Chain Monte Carlo
TFP implements a ton of Markov chain Monte Carlo (MCMC) algorithms(like Metropolis, Gibbs, Hamiltonian) whose use is sample a probability distribution and a few of Value Iteration algorithms in TensorFlow. Until 2018 Pyro didn’t perform Markov chain Monte Carlo. It has been updated and has full MCMC, HMC, and NUTS support.
7. Optimizers
Just like TFP implements several optimizers of TensorFlow, including Nelder-Mead, BFGS, and L-BFGS (for determining unconstrained nonlinear optimization problems), Pyro implements the optimizers that are present in PyTorch.The module pyro.optim provides support for optimization in Pyro. It can be said that the two PPL’s are dependent on their basic modules (TensorFlow and PyTorch).
8. Bijectors
In TFP, bijectors includes the change of variables for a probability density. When we map from one space to another, we also influence a map from probability densities on the initial space to densities on the target space.
But as we are mapping to a different space, we need to track these mapping accounts for them in the computation of the probability density in the latter space. Bijectors are therefore used for smooth mapping. In pyro, the documentation doesn’t mention anything about the bijectors, so I assume they don’t have them.
9. Time Series
The pyro.contrib.timeseries module provides a collection of Bayesian time series models useful for forecasting applications. This can be achieved by making use of the existing Forecaster object in Pyro. After we give input data to the model, we just tell the model how to make an informed prediction.
It’s that easy, just data and a probabilistic framework. TFP however makes use of Tensorflow’s time series models like CNN’s and RNN’s along with its Framework for Bayesian structural time series models (tfp.sts). Bayesian structural time series is a high-level interface for fitting time-series models which is yet to be released.
10. Distributions
It is a base class for constructing and organizing properties (e.g., mean, variance) of random variables (e.g, Bernoulli, Gaussian). One example can be a normal distribution. Most distributions in Pyro are thin wrappers around PyTorch distributions. For details on the PyTorch distribution interface, you can check out torch.distributions.distribution.Distribution. TFP however has its module tfp.distributions.
11. Generalized Linear Models(GLM)
In statistics, the generalized linear model is a flexible generalization of ordinary linear regression that allows for response variables that have error distribution models other than a normal distribution. In TFP, the tfp.glm module contains a high-level interface for fitting mixed-effects regression models. Pyro, however, does not have such a module for GLM.
Popular AI and ML Blogs & Free Courses
Conclusion
Using these factors, it is safe to conclude that Pyro does not differ so much from TFP. They are both based in the Python programming language. Python APIs are well documented. Pytorch, however, has a good ramp up time and is therefore much faster than TensorFlow. Deciding among these two frameworks will rely on how accessible you find the learning method for each of them. Your selection will also depend on your organization’s requirements.
If you’re interested to learn more about machine learning, check out IIIT-B & upGrad’s Executive PG Programme in Machine Learning & AI which is designed for working professionals and offers 450+ hours of rigorous training, 30+ case studies & assignments, IIIT-B Alumni status, 5+ practical hands-on capstone projects & job assistance with top firms.
Frequently Asked Questions (FAQs)
1. How is machine learning connected with statistics and vice versa?
Statistics is used to build a statistical model in order to represent the data and draw conclusions or inferences from it. While machine learning makes use of this statistical model to obtain an understanding of the data and make accurate predictions. Thus, statistics are used in building statistical models to help carry out machine learning properly and easily.
2. Can I know machine learning without the knowledge of statistics?
Statistics and machine learning are interconnected. If you know statistics, you can represent data in the form of a statistical model and then analyze and make predictions with machine learning. Thus, knowing statistics prior to machine learning will be quite helpful. So, if you just know the basics of statistics, you are good to go. You do not have to be a pro at statistics to do well in machine learning.
3. Is TensorFlow easy to learn for a beginner?
TensorFlow is an open-source machine learning platform that runs from start to finish. TensorFlow makes creating machine learning models simple for both beginners and professionals. You'll need to spend between six and twelve months studying and perfecting your TensorFlow abilities if you want to work in machine learning. However, if you know the fundamentals of programming languages like R and Python, you won't have too much trouble.
RELATED PROGRAMS