- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Statistics For Data Science Free Online Course with Certification [2024]
Updated on 04 January, 2024
7.98K+ views
• 8 min read
Table of Contents
Data Science has been under the limelight for quite some time, and it is here to stay. In simple words, Data Science is an advanced field of study that leverages a combination of mathematical, statistical, and scientific techniques, processes, algorithms, and tools to obtain meaningful information from both structured and unstructured data.
Since Data Science is all about analyzing data and extracting insights from within, Statistics plays a significant role in Data Science. Statistics is a discipline that primarily deals in collecting, analyzing, interpreting, and presenting data in ways that can be understood by all.
In the real-world scenario, Statistics is used across industries to process complex challenges and to aid Data Science experts to find valuable patterns in large datasets. Essentially, Data Science professionals employ different statistical methods to perform mathematical computations on data to make sense of the raw data.
Statistics for Data Science
Statistics is a highly useful tool for Data Science, especially when it comes to data analysis. Statistical methods take a targeted approach to data, thereby allowing Data Science experts to draw concrete conclusions on the data at hand rather than merely guessing. Statistics enables you to understand the data structure and prepare the data for further analysis via Data Science techniques. Therefore, statistics for data science course free of cost is the way to strengthen your data science skills.
Earn data science certification from the World’s top Universities. Join our Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career.
Here are four fundamental statistical concepts that are crucial in Data Science:
1. Statistical Features
Statistical features are pivotal in exploring a large dataset that includes concepts like bias, variance, mean, median, etc. These are the basic features that you can easily implement within a code.
2. Probability Distributions
In Data Science, probability refers to the chance that an event might occur or not. It is generally quantified within 0 to 1, wherein 0 means the event will not occur, and 1 means the event will occur. Thus, a probability distribution is a statistical function that represents all the possibilities between 0 to 1 in a particular dataset.
3. Dimensionality Reduction
Dimensionality Reduction refers to the technique of reducing the number of random variables (features) in a given experiment by extracting a set of principal variables. The process is divided into feature selection and feature extraction. While the feature selection process produces a smaller subset of the original set of features, feature extraction reduces the number of dimensions, that is, the data present in a high dimensional space is fit into a lower dimension space.
4. Oversampling and Undersampling
Oversampling and undersampling are statistical techniques used for data classification. Often, the data at hand is mostly tipped over on one side, thereby making the model imperfectly balanced. For instance, a dataset having two classes may contain 100 samples for class 1, whereas 500 samples for class 2.
If this isn’t balanced, it throws off the model’s ability to make accurate predictions. In undersampling, you only consider a portion (equal to the samples of the minority class) of data derived from the majority class. However, in oversampling, you need to create copies of the minority class to match the number of majority class samples.
Read: Data Science Project Ideas
Types of Statistical Analysis
Statistical analysis is mostly concerned about gathering data from disparate sources, exploring and analyzing it, and visualizing the findings through appropriate data visualization methods. It is a vital tool that you can learn through statistics for data science course free, since it allows businesses to uncover and predict the future market and consumer trends. There are two types of statistical analysis:
Descriptive
As the name suggests, descriptive statistics refers to the process of summarizing the data using visualization tools like charts, tables, and graphs. It does not draw any conclusion on the population (a set of variables in a dataset from which samples are drawn). Descriptive statistics aims to summarize the data in ways that make it easier to present and understand raw data.
Explore our Popular Data Science Courses
Inferential
Unlike descriptive statistics that primarily focuses on summarizing and presenting data, inference statistics enables you to experiment with hypotheses and draw concrete conclusions. In this approach, you will examine the complete dataset and apply the results to the group as a whole.
Top Data Science Skills You Should Learn
Benefits of Statistics for Data Science
Data science models require complex functions, algorithms, and principles to work through unstructured data sets, though statistical help can ensure a smooth execution process for data scientists. Statistics uses a sophisticated method to evaluate and cleanse data belonging to diverse fields while also preparing data for further evaluation to obtain its most insightful form.
Let’s find out more about the benefits of statistics for data science.
- Data management: Statistics help data analysts and scientists execute structuring and data classification to obtain a consumable data form that analysts later use to implement business decisions.
- Contributes to pattern detection: Statistics helps sieve data through pattern detection that removes unwanted data to deliver optimal results, processing valuable data to reap value from it.
- Delivers valuable insights assisting visualization: Statistics using data visualization methods can create effective data sets that are engaging, useful, and easy to understand. Charts, reports, and graphs are all made possible using statistics in data science.
- Estimation and probability distribution: Statistics assist estimation and probability distribution using data science algorithms like cross-validation and logistic regression, helping machines make predictions.
- Reduced assumptions, increased predictions: Using previous and current data sets, statistics help make reliable predictions over unsure assumptions.
These are some of the benefits of statistics for data science. Statistics for data science free courses can simplify your journey to understand the basics and advanced concepts of statistics. As you learn statistics for data science online free of charge, your foundation will strengthen, helping you acquire exceptional career opportunities.
Read our Popular US - Data Science Articles
Learn Statistics for Data Science Online Free: The upGrad advantage
If you aspire to build a career in Data Science, you must have a strong foundation in Statistics. The best part is that you can master the fundamentals of Statistics right from the comfort of your home with upGrad’s Statistics for Data Science free courses. Statistics for data science course for free offered by upGrad under its upStart-Priceless Learning program.
Statistics for data science free courses are exclusively designed to empower individuals who wish to enter the world of Data Science, either as a beginner or as a career move. In this Statistics for Data Science free course, you will learn basic and advanced statistical concepts and use them to solve real-world challenges.
As is true of all upGrad offerings, you will be trained by top mentors and industry leaders. Apart from receiving one-on-one mentorship, you will also get a chance to participate in live interaction sessions and access industry-specific content and learning resources as you learn statistics for data science online free. On course completion, you will obtain a certificate of completion from upGrad.
upGrad’s Statistics for Data Science free course is a five-week program is divided into three parts:
1. Inferential Statistics
In this module, you’ll learn the basics of probability along with different methods of distribution and sampling. You will also learn how to describe sample data and make inferences on the population.
Our learners also read: Top Python Courses for Free
2. Hypothesis Testing
This module will teach you how to use hypothesis testing concepts on the sample data to test if the population data’s estimations are valid. Besides, you will also learn how to leverage different statistical tools for industry demonstration.
3. Assignment
The third module focuses on teaching candidates how to apply your theoretical knowledge (gained in the first two modules) for the QA testing of a pharma company’s painkiller meds.
Taking an online course to learn Statistics for Data Science is an excellent option for aspirants who already have education or professional engagements. Online courses offer the flexibility to learn and progress according to your convenience and schedule.
Must Read: Data Scientist Salary in India
upGrad’s Exclusive Data Science Webinar for you –
Transformation & Opportunities in Analytics & Insights
How to Start
To join our machine learning online course free, follow these simple steps:
- Head to our upStart page
- Choose the course you want to join
- Register
All the courses present on our upStart page are available for free and don’t require any monetary investment. These courses help you kickstart your learning journey and get acquainted with the fundamentals of such complicated subjects.
Sign up here to join our free courses on machine learning today.
If you have any questions or suggestions, please let us know through the comments. We’d love to hear from you.
If you are curious to learn about data science, check out IIIT-B & upGrad’s PG Diploma in Data Science which is created for working professionals and offers 10+ case studies & projects, practical hands-on workshops, mentorship with industry experts, 1-on-1 with industry mentors, 400+ hours of learning and job assistance with top firms.
Frequently Asked Questions (FAQs)
1. What do you mean by oversampling and undersampling?
In statistics, data can be classified using two methods- oversampling and undersampling.Most of the time, the model is imperfectly unbalanced due to data tipped on one side. This imbalance can affect the accuracy of the data predictions. In such cases, we use oversampling and undersampling.
In undersampling, we only consider the part which is heavier i.e., data derived from the majority portion whereas in oversampling, we make copies of the minority portion to make it equal to the majority part and balance our model.
2. What is the importance of statistics in data science?
Statistics is one of the foundational pillars building up the base of data science. As this field is centred on data, statistical mathematics offer formulae and methods to get a deep understanding of the data.
Statistics allow making predictive deductions using probability analysis which leads to a better decision making process.
3. Describe the types of statistical analyses?
The statistical analysis can be predominantly categorized into 2 types- descriptive and inferential. Descriptive statistics is to describe the data in the form of visuals such as graphs and charts, whereas inferential analyses aim to summarize the data by making predictions about it.
Consider the data of a school where you ask 100 students if they like Mathematics. Depending upon the data you collected from there, you can either plot some visual charts of answers Yes or No (Descriptive statistics). Another thing that you could do here is to predict the percentage of students who like Mathematics and who don’t like it (Inferential statistics). For example, you could say that 75% of the students like the subject.