- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Stock Market Prediction Using Machine Learning [Step-by-Step Implementation]
Updated on 22 September, 2022
12.98K+ views
• 12 min read
Table of Contents
Introduction
Prediction and analysis of the stock market are some of the most complicated tasks to do. There are several reasons for this, such as the market volatility and so many other dependent and independent factors for deciding the value of a particular stock in the market. These factors make it very difficult for any stock market analyst to predict the rise and fall with high accuracy degrees.
However, with the advent of Machine Learning and its robust algorithms, the latest market analysis and Stock Market Prediction developments have started incorporating such techniques in understanding the stock market data.
In short, Machine Learning Algorithms are being used widely by many organisations in analysing and predicting stock values. This article shall go through a simple Implementation of analysing and predicting a Popular Worldwide Online Retail Store’s stock values using several Machine Learning Algorithms in Python.
Trending Machine Learning Skills
Problem Statement
Before we get into the program’s implementation to predict the stock market values, let us visualise the data on which we will be working. Here, we will be analysing the stock value of Microsoft Corporation (MSFT) from the National Association of Securities Dealers Automated Quotations (NASDAQ). The stock value data will be presented in the form of a Comma Separated File (.csv), which can be opened and viewed using Excel or a Spreadsheet.
MSFT has its stocks registered in NASDAQ and has its values updated during every working day of the stock market. Note that the market doesn’t allow trading to happen on Saturdays and Sundays; hence there is a gap between the two dates. For each date, the Opening Value of the stock, Highest and Lowest values of that stock on the same days are noted, along with the Closing Value at the end of the day.
The Adjusted Close Value shows the stock’s value after dividends are posted (Too technical!). Additionally, the total volume of the stocks in the market are also given, With these data, it is up to the work of a Machine Learning/Data Scientist to study the data and implement several algorithms that can extract patterns from the Microsoft Corporation stock’s historical data.
Long Short-Term Memory
To develop a Machine Learning model to predict the stock prices of Microsoft Corporation, we will be using the technique of Long Short-Term Memory (LSTM). They are used to make small modifications to the information by multiplications and additions. By definition, long-term memory (LSTM) is an artificial recurrent neural network (RNN) architecture used in deep learning.
Unlike standard feed-forward neural networks, LSTM has feedback connections. It can process single data points (such as images) and entire data sequences (such as speech or video).To understand the concept behind LSTM, let us take a simple example of an online customer review of a Mobile Phone.
FYI: Free nlp course!
Suppose we want to buy the Mobile Phone, we usually refer to the net reviews by certified users. Depending on their thinking and inputs, we decide whether the mobile is good or bad and then buy it. As we go on reading the reviews, we look for keywords such as “amazing”, “good camera”, “best battery backup”, and many other terms related to a mobile phone.
We tend to ignore the common words in English such as “it”, “gave”, “this”, etc. Thus, when we decide whether to buy the mobile phone or not, we only remember these keywords defined above. Most probably, we forget the other words.
This is the same way in which the Long short-term Memory Algorithm works. It only remembers the relevant information and uses it to make predictions ignoring the non-relevant data. In this way, we have to build an LSTM model that essentially recognises only the essential data about that stock and leaves out its outliers.
Though the above-given structure of an LSTM architecture may seem intriguing at first, it is sufficient to remember that LSTM is an advanced version of Recurrent Neural Networks that retains Memory to process sequences of data. It can remove or add information to the cell state, carefully regulated by structures called gates.
The LSTM unit comprises a cell, an input gate, an output gate, and a forget gate. The cell remembers values over arbitrary time intervals, and the three gates regulate the flow of information into and out of the cell.
Program Implementation
We shall move on to the part where we put the LSTM into use in predicting the stock value using Machine Learning in Python.
Step 1 – Importing the Libraries
As we all know, the first step is to import libraries that are necessary to preprocess the stock data of Microsoft Corporation and the other required libraries for building and visualising the outputs of the LSTM model. For this, we will use the Keras library under the TensorFlow framework. The required modules are imported from the Keras library individually.
#Importing the Libraries
import pandas as PD
import NumPy as np
%matplotlib inline
import matplotlib. pyplot as plt
import matplotlib
from sklearn. Preprocessing import MinMaxScaler
from Keras. layers import LSTM, Dense, Dropout
from sklearn.model_selection import TimeSeriesSplit
from sklearn.metrics import mean_squared_error, r2_score
import matplotlib. dates as mandates
from sklearn. Preprocessing import MinMaxScaler
from sklearn import linear_model
from Keras. Models import Sequential
from Keras. Layers import Dense
import Keras. Backend as K
from Keras. Callbacks import EarlyStopping
from Keras. Optimisers import Adam
from Keras. Models import load_model
from Keras. Layers import LSTM
from Keras. utils.vis_utils import plot_model
Step 2 – Getting Visualising the Data
Using the Pandas Data reader library, we shall upload the local system’s stock data as a Comma Separated Value (.csv) file and store it to a pandas DataFrame. Finally, we shall also view the data.
#Get the Dataset
df = pd.read_csv(“MicrosoftStockData.csv”,na_values=[‘null’],index_col=’Date’,parse_dates=True,infer_datetime_format=True)
df.head()
Get AI certification online from the World’s top Universities – Masters, Executive Post Graduate Programs, and Advanced Certificate Program in ML & AI to fast-track your career.
Step 3 – Print the DataFrame Shape and Check for Null Values.
In this yet another crucial step, we first print the shape of the dataset. To make sure that there are no null values in the data frame, we check for them. The presence of null values in the dataset tend to cause problems during training as they act as outliers causing a wide variance in the training process.
#Print Dataframe shape and Check for Null Values
print(“Dataframe Shape: “, df. shape)
print(“Null Value Present: “, df.IsNull().values.any())
>> Dataframe Shape: (7334, 6)
>>Null Value Present: False
Date | Open | High | Low | Close | Adj Close | Volume |
1990-01-02 | 0.605903 | 0.616319 | 0.598090 | 0.616319 | 0.447268 | 53033600 |
1990-01-03 | 0.621528 | 0.626736 | 0.614583 | 0.619792 | 0.449788 | 113772800 |
1990-01-04 | 0.619792 | 0.638889 | 0.616319 | 0.638021 | 0.463017 | 125740800 |
1990-01-05 | 0.635417 | 0.638889 | 0.621528 | 0.622396 | 0.451678 | 69564800 |
1990-01-08 | 0.621528 | 0.631944 | 0.614583 | 0.631944 | 0.458607 | 58982400 |
Step 4 – Plotting the True Adjusted Close Value
The final output value that is to be predicted using the Machine Learning model is the Adjusted Close Value. This value represents the closing value of the stock on that particular day of stock market trading.
#Plot the True Adj Close Value
df[‘Adj Close’].plot()
Step 5 – Setting the Target Variable and Selecting the Features
In the next step, we assign the output column to the target variable. In this case, it is the adjusted relative value of the Microsoft Stock. Additionally, we also select the features that act as the independent variable to the target variable (dependent variable). To account for training purpose, we choose four characteristics, which are:
- Open
- High
- Low
- Volume
#Set Target Variable
output_var = PD.DataFrame(df[‘Adj Close’])
#Selecting the Features
features = [‘Open’, ‘High’, ‘Low’, ‘Volume’]
Step 6 – Scaling
To reduce the data’s computational cost in the table, we shall scale down the stock values to values between 0 and 1. In this way, all the data in big numbers get reduced, thus reducing memory usage. Also, we can get more accuracy by scaling down as the data is not spread out in tremendous values. This is performed by the MinMaxScaler class of the sci-kit-learn library.
#Scaling
scaler = MinMaxScaler()
feature_transform = scaler.fit_transform(df[features])
feature_transform= pd.DataFrame(columns=features, data=feature_transform, index=df.index)
feature_transform.head()
Date | Open | High | Low | Volume |
1990-01-02 | 0.000129 | 0.000105 | 0.000129 | 0.064837 |
1990-01-03 | 0.000265 | 0.000195 | 0.000273 | 0.144673 |
1990-01-04 | 0.000249 | 0.000300 | 0.000288 | 0.160404 |
1990-01-05 | 0.000386 | 0.000300 | 0.000334 | 0.086566 |
1990-01-08 | 0.000265 | 0.000240 | 0.000273 | 0.072656 |
As mentioned above, we see that the feature variables’ values are scaled down to smaller values compared to the real values given above.
Step 7 – Splitting to a Training Set and Test Set.
Before feeding the data into the training model, we need to split the entire dataset into training and test set. The Machine Learning LSTM model will be trained on the data present in the training set and tested upon on the test set for accuracy and backpropagation.
For this, we will be using the TimeSeriesSplit class of the sci-kit-learn library. We set the number of splits as 10, which denotes that 10% of the data will be used as the test set, and 90% of the data will be used for training the LSTM model. The advantage of using this Time Series split is that the split time series data samples are observed at fixed time intervals.
#Splitting to Training set and Test set
timesplit= TimeSeriesSplit(n_splits=10)
for train_index, test_index in timesplit.split(feature_transform):
X_train, X_test = feature_transform[:len(train_index)], feature_transform[len(train_index): (len(train_index)+len(test_index))]
y_train, y_test = output_var[:len(train_index)].values.ravel(), output_var[len(train_index): (len(train_index)+len(test_index))].values.ravel()
Step 8 – Processing the Data For LSTM
Once the training and test sets are ready, we can feed the data into the LSTM model once it is built. Before that, we need to convert the training and test set data into a data type that the LSTM model will accept. We first convert the training data and test data to NumPy arrays and then reshape them to the format (Number of Samples, 1, Number of Features) as the LSTM requires that the data be fed in 3D form. As we know, the number of samples in the training set is 90% of 7334, which is 6667, and the number of features is 4, the training set is reshaped to (6667, 1, 4). Similarly, the test set is also reshaped.
#Process the data for LSTM
trainX =np.array(X_train)
testX =np.array(X_test)
X_train = trainX.reshape(X_train.shape[0], 1, X_train.shape[1])
X_test = testX.reshape(X_test.shape[0], 1, X_test.shape[1])
Step 9 – Building the LSTM Model
Finally, we come to the stage where we build the LSTM Model. Here, we create a Sequential Keras model with one LSTM layer. The LSTM layer has 32 unit, and it is followed by one Dense Layer of 1 neuron.
We use Adam Optimizer and the Mean Squared Error as the loss function for compiling the model. These two are the most preferred combination for an LSTM model. Additionally, the model is also plotted and is displayed below.
#Building the LSTM Model
lstm = Sequential()
lstm.add(LSTM(32, input_shape=(1, trainX.shape[1]), activation=’relu’, return_sequences=False))
lstm.add(Dense(1))
lstm.compile(loss=’mean_squared_error’, optimizer=’adam’)
plot_model(lstm, show_shapes=True, show_layer_names=True)
Step 10 – Training the Model
Finally, we train the LSTM model designed above on the training data for 100 epochs with a batch size of 8 using the fit function.
#Model Training
history = lstm.fit(X_train, y_train, epochs=100, batch_size=8, verbose=1, shuffle=False)
Epoch 1/100
834/834 [==============================] – 3s 2ms/step – loss: 67.1211
Epoch 2/100
834/834 [==============================] – 1s 2ms/step – loss: 70.4911
Epoch 3/100
834/834 [==============================] – 1s 2ms/step – loss: 48.8155
Epoch 4/100
834/834 [==============================] – 1s 2ms/step – loss: 21.5447
Epoch 5/100
834/834 [==============================] – 1s 2ms/step – loss: 6.1709
Epoch 6/100
834/834 [==============================] – 1s 2ms/step – loss: 1.8726
Epoch 7/100
834/834 [==============================] – 1s 2ms/step – loss: 0.9380
Epoch 8/100
834/834 [==============================] – 2s 2ms/step – loss: 0.6566
Epoch 9/100
834/834 [==============================] – 1s 2ms/step – loss: 0.5369
Epoch 10/100
834/834 [==============================] – 2s 2ms/step – loss: 0.4761
.
.
.
.
Epoch 95/100
834/834 [==============================] – 1s 2ms/step – loss: 0.4542
Epoch 96/100
834/834 [==============================] – 2s 2ms/step – loss: 0.4553
Epoch 97/100
834/834 [==============================] – 1s 2ms/step – loss: 0.4565
Epoch 98/100
834/834 [==============================] – 1s 2ms/step – loss: 0.4576
Epoch 99/100
834/834 [==============================] – 1s 2ms/step – loss: 0.4588
Epoch 100/100
834/834 [==============================] – 1s 2ms/step – loss: 0.4599
Finally, we see that the loss value has decreased exponentially over time during the training process of 100 epochs and has reached a value of 0.4599
Step 11 – LSTM Prediction
With our model ready, it is time to use the model trained using the LSTM network on the test set and predict the Adjacent Close Value of the Microsoft stock. This is performed by using the simple function of predict on the lstm model built.
#LSTM Prediction
y_pred= lstm.predict(X_test)
Step 12 – True vs Predicted Adj Close Value – LSTM
Finally, as we have predicted the test set’s values, we can plot the graph to compare both Adj Close’s true values and Adj Close’s predicted value by the LSTM Machine Learning model.
#True vs Predicted Adj Close Value – LSTM
plt.plot(y_test, label=’True Value’)
plt.plot(y_pred, label=’LSTM Value’)
plt.title(“Prediction by LSTM”)
plt.xlabel(‘Time Scale’)
plt.ylabel(‘Scaled USD’)
plt.legend()
plt.show()
The above graph shows that some pattern is detected by the very basic single LSTM network model built above. By fine-tuning several parameters and adding more LSTM layers to the model, we can achieve a more accurate representation of any given company’s stock value.
Popular AI and ML Blogs & Free Courses
Conclusion
If you’re interested to learn more about artificial intelligence examples, machine learning, check out IIIT-B & upGrad’s Executive PG Programme in Machine Learning & AI which is designed for working professionals and offers 450+ hours of rigorous training, 30+ case studies & assignments, IIIT-B Alumni status, 5+ practical hands-on capstone projects & job assistance with top firms.
Top Machine Learning and AI Courses Online
Frequently Asked Questions (FAQs)
1. Can you predict the stock market using machine learning?
Today, we have a number of indicators to help predict market trends. However, we have to look no further than a high-powered computer to find the most accurate indicators for the stock market. The stock market is an open system, and it can be viewed as a complex network. The network is made up of the relationships between the stocks, companies, investors and trade volumes. By using a data-mining algorithm like the support vector machine, you can apply a mathematical formula to extract the relationships among these variables. The stock market is now beyond human prediction.
2. Which algorithm is best for stock market prediction?
For best results, you should use Linear Regression. Linear Regression is a statistical approach that is used to determine the relationship between two different variables. In this example, the variables are price and time. In stock market prediction, the price is the independent variable, and the time is the dependent variable. If a linear relationship between these two variables can be determined, then it is possible to accurately predict the value of the stock at any point in the future.
3. Is stock market prediction a classification or regression problem?
Before we answer, we need to understand what stock market predictions mean. Is it a binary classification problem or a regression problem? Suppose we want to predict the future of a stock, where future means the next day, week, month, or year. If the past performance of the stock at some time point is the input and future is the output, then it is a regression problem. If the past performance of a stock and the future of a stock are independent, then it is a classification problem.
RELATED PROGRAMS