Explore Courses
Liverpool Business SchoolLiverpool Business SchoolMBA by Liverpool Business School
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA (Master of Business Administration)
  • 15 Months
Popular
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Business Administration (MBA)
  • 12 Months
New
Birla Institute of Management Technology Birla Institute of Management Technology Post Graduate Diploma in Management (BIMTECH)
  • 24 Months
Liverpool John Moores UniversityLiverpool John Moores UniversityMS in Data Science
  • 18 Months
Popular
IIIT BangaloreIIIT BangalorePost Graduate Programme in Data Science & AI (Executive)
  • 12 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
upGradupGradData Science Bootcamp with AI
  • 6 Months
New
University of MarylandIIIT BangalorePost Graduate Certificate in Data Science & AI (Executive)
  • 8-8.5 Months
upGradupGradData Science Bootcamp with AI
  • 6 months
Popular
upGrad KnowledgeHutupGrad KnowledgeHutData Engineer Bootcamp
  • Self-Paced
upGradupGradCertificate Course in Business Analytics & Consulting in association with PwC India
  • 06 Months
OP Jindal Global UniversityOP Jindal Global UniversityMaster of Design in User Experience Design
  • 12 Months
Popular
WoolfWoolfMaster of Science in Computer Science
  • 18 Months
New
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Rushford, GenevaRushford Business SchoolDBA Doctorate in Technology (Computer Science)
  • 36 Months
IIIT BangaloreIIIT BangaloreCloud Computing and DevOps Program (Executive)
  • 8 Months
New
upGrad KnowledgeHutupGrad KnowledgeHutAWS Solutions Architect Certification
  • 32 Hours
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Popular
upGradupGradUI/UX Bootcamp
  • 3 Months
upGradupGradCloud Computing Bootcamp
  • 7.5 Months
Golden Gate University Golden Gate University Doctor of Business Administration in Digital Leadership
  • 36 Months
New
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Golden Gate University Golden Gate University Doctor of Business Administration (DBA)
  • 36 Months
Bestseller
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDoctorate of Business Administration (DBA)
  • 36 Months
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (DBA)
  • 36 Months
KnowledgeHut upGradKnowledgeHut upGradSAFe® 6.0 Certified ScrumMaster (SSM) Training
  • Self-Paced
KnowledgeHut upGradKnowledgeHut upGradPMP® certification
  • Self-Paced
IIM KozhikodeIIM KozhikodeProfessional Certification in HR Management and Analytics
  • 6 Months
Bestseller
Duke CEDuke CEPost Graduate Certificate in Product Management
  • 4-8 Months
Bestseller
upGrad KnowledgeHutupGrad KnowledgeHutLeading SAFe® 6.0 Certification
  • 16 Hours
Popular
upGrad KnowledgeHutupGrad KnowledgeHutCertified ScrumMaster®(CSM) Training
  • 16 Hours
Bestseller
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 4 Months
upGrad KnowledgeHutupGrad KnowledgeHutSAFe® 6.0 POPM Certification
  • 16 Hours
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Science in Artificial Intelligence and Data Science
  • 12 Months
Bestseller
Liverpool John Moores University Liverpool John Moores University MS in Machine Learning & AI
  • 18 Months
Popular
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
IIIT BangaloreIIIT BangaloreExecutive Post Graduate Programme in Machine Learning & AI
  • 13 Months
Bestseller
IIITBIIITBExecutive Program in Generative AI for Leaders
  • 4 Months
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
IIIT BangaloreIIIT BangalorePost Graduate Certificate in Machine Learning & Deep Learning (Executive)
  • 8 Months
Bestseller
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Liverpool Business SchoolLiverpool Business SchoolMBA with Marketing Concentration
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA with Marketing Concentration
  • 15 Months
Popular
MICAMICAAdvanced Certificate in Digital Marketing and Communication
  • 6 Months
Bestseller
MICAMICAAdvanced Certificate in Brand Communication Management
  • 5 Months
Popular
upGradupGradDigital Marketing Accelerator Program
  • 05 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Corporate & Financial Law
  • 12 Months
Bestseller
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in AI and Emerging Technologies (Blended Learning Program)
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Intellectual Property & Technology Law
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Dispute Resolution
  • 12 Months
upGradupGradContract Law Certificate Program
  • Self paced
New
ESGCI, ParisESGCI, ParisDoctorate of Business Administration (DBA) from ESGCI, Paris
  • 36 Months
Golden Gate University Golden Gate University Doctor of Business Administration From Golden Gate University, San Francisco
  • 36 Months
Rushford Business SchoolRushford Business SchoolDoctor of Business Administration from Rushford Business School, Switzerland)
  • 36 Months
Edgewood CollegeEdgewood CollegeDoctorate of Business Administration from Edgewood College
  • 24 Months
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with Concentration in Generative AI
  • 36 Months
Golden Gate University Golden Gate University DBA in Digital Leadership from Golden Gate University, San Francisco
  • 36 Months
Liverpool Business SchoolLiverpool Business SchoolMBA by Liverpool Business School
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA (Master of Business Administration)
  • 15 Months
Popular
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Business Administration (MBA)
  • 12 Months
New
Deakin Business School and Institute of Management Technology, GhaziabadDeakin Business School and IMT, GhaziabadMBA (Master of Business Administration)
  • 12 Months
Liverpool John Moores UniversityLiverpool John Moores UniversityMS in Data Science
  • 18 Months
Bestseller
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Science in Artificial Intelligence and Data Science
  • 12 Months
Bestseller
IIIT BangaloreIIIT BangalorePost Graduate Programme in Data Science (Executive)
  • 12 Months
Bestseller
O.P.Jindal Global UniversityO.P.Jindal Global UniversityO.P.Jindal Global University
  • 12 Months
WoolfWoolfMaster of Science in Computer Science
  • 18 Months
New
Liverpool John Moores University Liverpool John Moores University MS in Machine Learning & AI
  • 18 Months
Popular
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (AI/ML)
  • 36 Months
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDBA Specialisation in AI & ML
  • 36 Months
Golden Gate University Golden Gate University Doctor of Business Administration (DBA)
  • 36 Months
Bestseller
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDoctorate of Business Administration (DBA)
  • 36 Months
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (DBA)
  • 36 Months
Liverpool Business SchoolLiverpool Business SchoolMBA with Marketing Concentration
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA with Marketing Concentration
  • 15 Months
Popular
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Corporate & Financial Law
  • 12 Months
Bestseller
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Intellectual Property & Technology Law
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Dispute Resolution
  • 12 Months
IIITBIIITBExecutive Program in Generative AI for Leaders
  • 4 Months
New
IIIT BangaloreIIIT BangaloreExecutive Post Graduate Programme in Machine Learning & AI
  • 13 Months
Bestseller
upGradupGradData Science Bootcamp with AI
  • 6 Months
New
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
KnowledgeHut upGradKnowledgeHut upGradSAFe® 6.0 Certified ScrumMaster (SSM) Training
  • Self-Paced
upGrad KnowledgeHutupGrad KnowledgeHutCertified ScrumMaster®(CSM) Training
  • 16 Hours
upGrad KnowledgeHutupGrad KnowledgeHutLeading SAFe® 6.0 Certification
  • 16 Hours
KnowledgeHut upGradKnowledgeHut upGradPMP® certification
  • Self-Paced
upGrad KnowledgeHutupGrad KnowledgeHutAWS Solutions Architect Certification
  • 32 Hours
upGrad KnowledgeHutupGrad KnowledgeHutAzure Administrator Certification (AZ-104)
  • 24 Hours
KnowledgeHut upGradKnowledgeHut upGradAWS Cloud Practioner Essentials Certification
  • 1 Week
KnowledgeHut upGradKnowledgeHut upGradAzure Data Engineering Training (DP-203)
  • 1 Week
MICAMICAAdvanced Certificate in Digital Marketing and Communication
  • 6 Months
Bestseller
MICAMICAAdvanced Certificate in Brand Communication Management
  • 5 Months
Popular
IIM KozhikodeIIM KozhikodeProfessional Certification in HR Management and Analytics
  • 6 Months
Bestseller
Duke CEDuke CEPost Graduate Certificate in Product Management
  • 4-8 Months
Bestseller
Loyola Institute of Business Administration (LIBA)Loyola Institute of Business Administration (LIBA)Executive PG Programme in Human Resource Management
  • 11 Months
Popular
Goa Institute of ManagementGoa Institute of ManagementExecutive PG Program in Healthcare Management
  • 11 Months
IMT GhaziabadIMT GhaziabadAdvanced General Management Program
  • 11 Months
Golden Gate UniversityGolden Gate UniversityProfessional Certificate in Global Business Management
  • 6-8 Months
upGradupGradContract Law Certificate Program
  • Self paced
New
IU, GermanyIU, GermanyMaster of Business Administration (90 ECTS)
  • 18 Months
Bestseller
IU, GermanyIU, GermanyMaster in International Management (120 ECTS)
  • 24 Months
Popular
IU, GermanyIU, GermanyB.Sc. Computer Science (180 ECTS)
  • 36 Months
Clark UniversityClark UniversityMaster of Business Administration
  • 23 Months
New
Golden Gate UniversityGolden Gate UniversityMaster of Business Administration
  • 20 Months
Clark University, USClark University, USMS in Project Management
  • 20 Months
New
Edgewood CollegeEdgewood CollegeMaster of Business Administration
  • 23 Months
The American Business SchoolThe American Business SchoolMBA with specialization
  • 23 Months
New
Aivancity ParisAivancity ParisMSc Artificial Intelligence Engineering
  • 24 Months
Aivancity ParisAivancity ParisMSc Data Engineering
  • 24 Months
The American Business SchoolThe American Business SchoolMBA with specialization
  • 23 Months
New
Aivancity ParisAivancity ParisMSc Artificial Intelligence Engineering
  • 24 Months
Aivancity ParisAivancity ParisMSc Data Engineering
  • 24 Months
upGradupGradData Science Bootcamp with AI
  • 6 Months
Popular
upGrad KnowledgeHutupGrad KnowledgeHutData Engineer Bootcamp
  • Self-Paced
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Bestseller
KnowledgeHut upGradKnowledgeHut upGradBackend Development Bootcamp
  • Self-Paced
upGradupGradUI/UX Bootcamp
  • 3 Months
upGradupGradCloud Computing Bootcamp
  • 7.5 Months
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 5 Months
upGrad KnowledgeHutupGrad KnowledgeHutSAFe® 6.0 POPM Certification
  • 16 Hours
upGradupGradDigital Marketing Accelerator Program
  • 05 Months
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
upGradupGradData Science Bootcamp with AI
  • 6 Months
Popular
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Bestseller
upGradupGradUI/UX Bootcamp
  • 3 Months
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 4 Months
upGradupGradCertificate Course in Business Analytics & Consulting in association with PwC India
  • 06 Months
upGradupGradDigital Marketing Accelerator Program
  • 05 Months

Strassen’s Matrix Multiplication Algorithm Explained

Updated on 20 March, 2024

6.58K+ views
8 min read

Imagine multiplying large matrices together by hand—it’s tedious and time-consuming, right? Well, that’s where Strassen’s Matrix Multiplication Algorithm comes to the rescue! Developed by Volker Strassen in 1969, this clever method changed the game in computational mathematics. Instead of brute force, it employs a smart divide-and-conquer approach, breaking down the problem into smaller, more manageable parts. This not only speeds up the process but also reduces the number of calculations needed. It’s like finding a shortcut in a maze—faster, smarter, and more efficient. Software Engineering Courses can help you get a clearer picture of how algorithms work in the real world. Let’s take a closer look at how Strassen’s Algorithm works and why it’s such a big deal in the world of computing.  

Basics of Matrix Multiplication 

Let us first get an understanding of what matrix multiplication is, as it is the key to delving into matrix multiplication strassen algorithm. Matrices are essentially grids of numbers, where each cell holds a value. In standard matrix multiplication, we multiply corresponding elements of rows and columns, summing the results to populate the resulting matrix. 

Now, let’s introduce Strassen’s Matrix Multiplication Algorithm. It’s like having a turbocharged calculator that breaks down large matrices into smaller, more manageable parts. Instead of naively multiplying every element, it cleverly divides the matrices into submatrices and applies mathematical shortcuts to streamline the computation. Think of it as solving a complex puzzle—you rearrange the pieces to simplify the problem. This method not only simplifies the workload but also speeds up the calculation, making matrix multiplication easier—even for complex matrices.   

Understanding Strassen’s Algorithm 

Before we jump in to examine the inner workings of the algorithm for strassen’s matrix multiplication to better understand it, check out the Master of Science in Computer Science from LJMU, which can get you a great firsthand at some of the industry use cases of such algorithms. Traditional matrix multiplication involves multiplying each element of a row in the first matrix with the corresponding element of a column in the second matrix, summing these products to populate the resulting matrix. However, Strassen’s algorithm takes a more sophisticated approach.

At its core, Strassen’s Algorithm applies a divide-and-conquer strategy to matrix multiplication. It splits the input matrices into smaller submatrices, recursively applying the algorithm to these subsets. This process continues until the submatrices are small enough to compute directly using conventional methods.  

The sheer brilliance of Strassen’s Algorithm is in how few arithmetic operations are needed to do matrix multiplication. It achieves a lower computing complexity than conventional techniques by breaking down the matrices into smaller sections and using innovative mathematical shortcuts.  

The algorithm’s effectiveness comes from its capacity to make use of matrices’ internal symmetries and require fewer multiplications than the conventional method. Instead of the usual eight multiplications required for each element of the resulting matrix, Strassen’s Algorithm reduces this to just seven, resulting in significant time savings, especially for large matrices. 

It’s important to keep in mind, though, that even though Strassen’s Algorithm theoretically reduces computational complexity, actual implementations may encounter difficulties because of the additional additions and higher overhead caused by the recursive decomposition. Furthermore, it can only be applied to square matrices whose dimensions are powers of two. If you are eager to get into the world of full stack development, check out the Full Stack Development Course by IIITB.To put it briefly, Strassen’s Matrix Multiplication Algorithm offers an innovative method for matrix multiplication by utilizing mathematical optimizations and divide-and-conquer strategies to minimize computer complexity.  

Strassen’s Algorithm Implementation 

Implementing Strassen’s Matrix Multiplication Algorithm involves transforming the divide-and-conquer strategy and the associated mathematical optimizations into code. While the algorithm offers improvements in computational complexity, its practical implementation needs careful attention to a lot of factors.  

Firstly, let’s outline the basic steps of Strassen’s Algorithm: 

  • Matrix Partitioning: Divide the input matrices into smaller submatrices. This step involves determining the midpoint of each dimension and splitting the matrices accordingly. Care must be taken to handle matrices with odd dimensions. 
  • Recursive Decomposition: Recursively apply the algorithm to the submatrices until they are small enough to compute directly. This involves calling the algorithm recursively on each submatrix and terminating the recursion when the submatrices reach a certain size threshold. 
  • Combining Results: Perform mathematical operations to combine the results of the submatrix multiplications. This typically involves adding or subtracting the products of the submatrices to form the result matrix. 
  • Base Case Handling: Implement logic to handle base cases where the input matrices are small enough to compute directly using conventional methods. This prevents unnecessary recursion and improves performance for small matrices. 
  • Optimizations: Implement optimizations to improve performance, such as memorization to avoid redundant calculations and cache-friendly memory access patterns. 

Here’s a simplified explanation of the Strassen algorithm using an example: 

Let’s say we have two matrices, A and B, that we want to multiply to get a new matrix, C. We can divide each matrix into four sub-matrices: 

Matrix A: 

A = | a  b |
    | c  d |
 

Matrix B: 

B = | e  f |
    | g  h |
 

We can then compute the following products using the Strassen algorithm: 

M1 = (a + d) * (e + h)
M2 = (c + d) * e
M3 = a * (f – h)
M4 = d * (g – e)
M5 = (a + b) * h
M6 = (c – a) * (e + f)
M7 = (b – d) * (g + h)
 

Finally, we can combine these products to obtain the resultant matrix C: 

C = | M1 + M4 – M5 + M7   M3 + M5 |
    | M2 + M4             M1 + M3 – M2 + M6 |
 

This recursive approach of dividing the matrices into smaller sub-matrices and computing the products is known as the “divide and conquer” strategy. The Strassen algorithm reduces the number of multiplications required compared to the naive method, resulting in improved time complexity.  

It’s important to note that the matrix multiplication strassen algorithm works best for matrices that have dimensions that are powers of 2. If the matrices do not meet this condition, they need to be padded with zeros to satisfy the requirement.  

Advantages and Limitations 

Implementing Strassen’s Matrix Multiplication Algorithm offers both advantages and limitations, shaping its practical applicability in various scenarios. 

Advantages: 

  • Improved Efficiency: Strassen’s Algorithm reduces the number of arithmetic operations required for matrix multiplication, leading to faster computation, especially for large matrices. 
  • Lower Complexity: By leveraging divide-and-conquer strategies and mathematical optimizations, Strassen’s Algorithm achieves a lower computational complexity compared to traditional methods. 
  • Optimal Performance: The algorithm’s ability to exploit symmetries within matrices and reduce the number of multiplications results in optimal performance, particularly in scenarios with large datasets. 
  • Algorithmic Elegance: Strassen’s Algorithm demonstrates elegant mathematical concepts, showcasing the beauty of algorithm design and optimization. 

Limitations: 

  • Memory Overhead: The recursive nature of Strassen’s Algorithm may lead to increased memory usage, particularly for large matrices, due to the need for intermediate matrix storage. 
  • Practical Implementations: While theoretically superior, practical implementations of Strassen’s Algorithm may face challenges in handling edge cases, such as matrices with odd dimensions, and managing overhead from recursive function calls. 
  • Precision Issues: The algorithm’s reliance on floating-point arithmetic can introduce precision issues, potentially impacting the accuracy of results, particularly in numerical computations requiring high precision. 
  • Limited Applicability: Strassen’s Algorithm is most effective for large square matrices with dimensions that are powers of two. Its applicability to other matrix types or dimensions may be limited.

Comparing Strassen’s Algorithm to Traditional Methods 

In this section, let’s delve into the comparison between Strassen’s Algorithm and traditional methods, shedding light on their efficiency and applicability in modern computational tasks.  

Strassen’s Algorithm: 

  • Efficiency: Strassen’s Algorithm shines when it comes to efficiency, especially for large matrices. By reducing the number of arithmetic operations required, it can significantly speed up computation time compared to traditional methods. 
  • Complexity: With its divide-and-conquer approach and mathematical optimizations, Strassen’s Algorithm boasts a lower computational complexity. This makes it particularly well-suited for tasks involving large datasets where minimizing computation time is crucial.
  • Optimal Performance: The algorithm’s ability to exploit symmetries within matrices and minimize the number of multiplications leads to optimal performance in certain scenarios, making it a preferred choice for high-performance computing tasks. 

Traditional Methods: 

  • Simplicity: Traditional methods, such as the naive approach or the more optimized algorithms like the Strassen-Butterfly algorithm, offer simplicity and ease of implementation. They are straightforward to understand and require minimal computational overhead.
  • Robustness: These methods are more robust and versatile, capable of handling various matrix types, sizes, and dimensions without constraints. They are suitable for a wide range of applications and do not rely on specific conditions or constraints like Strassen’s Algorithm does.
  • Precision: Traditional methods typically offer better precision and accuracy in results, particularly for numerical computations requiring high precision. They are less susceptible to precision issues associated with floating-point arithmetic.

Real-world Applications of Strassen’s Algorithm 

While Strassen’s Matrix Multiplication Algorithm may seem like a theoretical concept, its practical applications span across various fields, from scientific computing to computer graphics and beyond.  

Scientific Computing: 

In scientific computing, large-scale matrix operations are very common, especially in fields like physics, engineering, and computational biology. Strassen’s Algorithm’s ability to reduce the computational complexity of matrix multiplication makes it invaluable for accelerating simulations, solving systems of linear equations, and analyzing large datasets.

Computer Graphics: 

In computer graphics, transformations and rendering operations involve extensive matrix computations. Strassen’s Algorithm can significantly speed up these operations, enhancing the performance of rendering engines, 3D modeling software, and image processing applications. This allows for faster generation of realistic graphics and visual effects in video games, virtual reality environments, and animation studios.

Machine Learning and Data Science: 

Matrix operations form the backbone of many machine learning algorithms, such as neural networks, support vector machines, and principal component analysis. Strassen’s Algorithm’s efficiency in handling large matrices can accelerate training and inference tasks, leading to faster model convergence and improved prediction accuracy. This is particularly beneficial in applications such as image recognition, natural language processing, and recommendation systems.

Parallel and Distributed Computing: 

Strassen’s Algorithm’s divide-and-conquer nature lends itself well to parallel and distributed computing environments. By splitting large matrix computations into smaller tasks, it enables efficient utilization of multicore processors, GPU clusters, and distributed computing systems. This scalability makes it suitable for high-performance computing applications, including scientific simulations, financial modeling, and large-scale data analytics.

Cryptographic Algorithms: 

In cryptography, certain cryptographic algorithms, such as RSA and ECC, rely on matrix operations for encryption and decryption. Strassen’s Algorithm’s efficiency in handling large matrices can enhance the performance of these algorithms, improving the speed and security of cryptographic protocols used in secure communication, digital signatures, and data encryption. 

Conclusion

Strassen’s Matrix Multiplication Algorithm showcases the remarkable impact of smart math in speeding up computations. While it’s a game-changer in reducing complexity and boosting speed, there are practical considerations like memory use and precision that need attention. By grasping both its strengths and limitations, developers can tap into its potential to supercharge tasks in real-world scenarios. 

RELATED PROGRAMS