Explore Courses
Liverpool Business SchoolLiverpool Business SchoolMBA by Liverpool Business School
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA (Master of Business Administration)
  • 15 Months
Popular
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Business Administration (MBA)
  • 12 Months
New
Birla Institute of Management Technology Birla Institute of Management Technology Post Graduate Diploma in Management (BIMTECH)
  • 24 Months
Liverpool John Moores UniversityLiverpool John Moores UniversityMS in Data Science
  • 18 Months
Popular
IIIT BangaloreIIIT BangalorePost Graduate Programme in Data Science & AI (Executive)
  • 12 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
upGradupGradData Science Bootcamp with AI
  • 6 Months
New
University of MarylandIIIT BangalorePost Graduate Certificate in Data Science & AI (Executive)
  • 8-8.5 Months
upGradupGradData Science Bootcamp with AI
  • 6 months
Popular
upGrad KnowledgeHutupGrad KnowledgeHutData Engineer Bootcamp
  • Self-Paced
upGradupGradCertificate Course in Business Analytics & Consulting in association with PwC India
  • 06 Months
OP Jindal Global UniversityOP Jindal Global UniversityMaster of Design in User Experience Design
  • 12 Months
Popular
WoolfWoolfMaster of Science in Computer Science
  • 18 Months
New
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Rushford, GenevaRushford Business SchoolDBA Doctorate in Technology (Computer Science)
  • 36 Months
IIIT BangaloreIIIT BangaloreCloud Computing and DevOps Program (Executive)
  • 8 Months
New
upGrad KnowledgeHutupGrad KnowledgeHutAWS Solutions Architect Certification
  • 32 Hours
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Popular
upGradupGradUI/UX Bootcamp
  • 3 Months
upGradupGradCloud Computing Bootcamp
  • 7.5 Months
Golden Gate University Golden Gate University Doctor of Business Administration in Digital Leadership
  • 36 Months
New
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Golden Gate University Golden Gate University Doctor of Business Administration (DBA)
  • 36 Months
Bestseller
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDoctorate of Business Administration (DBA)
  • 36 Months
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (DBA)
  • 36 Months
KnowledgeHut upGradKnowledgeHut upGradSAFe® 6.0 Certified ScrumMaster (SSM) Training
  • Self-Paced
KnowledgeHut upGradKnowledgeHut upGradPMP® certification
  • Self-Paced
IIM KozhikodeIIM KozhikodeProfessional Certification in HR Management and Analytics
  • 6 Months
Bestseller
Duke CEDuke CEPost Graduate Certificate in Product Management
  • 4-8 Months
Bestseller
upGrad KnowledgeHutupGrad KnowledgeHutLeading SAFe® 6.0 Certification
  • 16 Hours
Popular
upGrad KnowledgeHutupGrad KnowledgeHutCertified ScrumMaster®(CSM) Training
  • 16 Hours
Bestseller
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 4 Months
upGrad KnowledgeHutupGrad KnowledgeHutSAFe® 6.0 POPM Certification
  • 16 Hours
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Science in Artificial Intelligence and Data Science
  • 12 Months
Bestseller
Liverpool John Moores University Liverpool John Moores University MS in Machine Learning & AI
  • 18 Months
Popular
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
IIIT BangaloreIIIT BangaloreExecutive Post Graduate Programme in Machine Learning & AI
  • 13 Months
Bestseller
IIITBIIITBExecutive Program in Generative AI for Leaders
  • 4 Months
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
IIIT BangaloreIIIT BangalorePost Graduate Certificate in Machine Learning & Deep Learning (Executive)
  • 8 Months
Bestseller
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Liverpool Business SchoolLiverpool Business SchoolMBA with Marketing Concentration
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA with Marketing Concentration
  • 15 Months
Popular
MICAMICAAdvanced Certificate in Digital Marketing and Communication
  • 6 Months
Bestseller
MICAMICAAdvanced Certificate in Brand Communication Management
  • 5 Months
Popular
upGradupGradDigital Marketing Accelerator Program
  • 05 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Corporate & Financial Law
  • 12 Months
Bestseller
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in AI and Emerging Technologies (Blended Learning Program)
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Intellectual Property & Technology Law
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Dispute Resolution
  • 12 Months
upGradupGradContract Law Certificate Program
  • Self paced
New
ESGCI, ParisESGCI, ParisDoctorate of Business Administration (DBA) from ESGCI, Paris
  • 36 Months
Golden Gate University Golden Gate University Doctor of Business Administration From Golden Gate University, San Francisco
  • 36 Months
Rushford Business SchoolRushford Business SchoolDoctor of Business Administration from Rushford Business School, Switzerland)
  • 36 Months
Edgewood CollegeEdgewood CollegeDoctorate of Business Administration from Edgewood College
  • 24 Months
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with Concentration in Generative AI
  • 36 Months
Golden Gate University Golden Gate University DBA in Digital Leadership from Golden Gate University, San Francisco
  • 36 Months
Liverpool Business SchoolLiverpool Business SchoolMBA by Liverpool Business School
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA (Master of Business Administration)
  • 15 Months
Popular
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Business Administration (MBA)
  • 12 Months
New
Deakin Business School and Institute of Management Technology, GhaziabadDeakin Business School and IMT, GhaziabadMBA (Master of Business Administration)
  • 12 Months
Liverpool John Moores UniversityLiverpool John Moores UniversityMS in Data Science
  • 18 Months
Bestseller
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Science in Artificial Intelligence and Data Science
  • 12 Months
Bestseller
IIIT BangaloreIIIT BangalorePost Graduate Programme in Data Science (Executive)
  • 12 Months
Bestseller
O.P.Jindal Global UniversityO.P.Jindal Global UniversityO.P.Jindal Global University
  • 12 Months
WoolfWoolfMaster of Science in Computer Science
  • 18 Months
New
Liverpool John Moores University Liverpool John Moores University MS in Machine Learning & AI
  • 18 Months
Popular
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (AI/ML)
  • 36 Months
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDBA Specialisation in AI & ML
  • 36 Months
Golden Gate University Golden Gate University Doctor of Business Administration (DBA)
  • 36 Months
Bestseller
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDoctorate of Business Administration (DBA)
  • 36 Months
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (DBA)
  • 36 Months
Liverpool Business SchoolLiverpool Business SchoolMBA with Marketing Concentration
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA with Marketing Concentration
  • 15 Months
Popular
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Corporate & Financial Law
  • 12 Months
Bestseller
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Intellectual Property & Technology Law
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Dispute Resolution
  • 12 Months
IIITBIIITBExecutive Program in Generative AI for Leaders
  • 4 Months
New
IIIT BangaloreIIIT BangaloreExecutive Post Graduate Programme in Machine Learning & AI
  • 13 Months
Bestseller
upGradupGradData Science Bootcamp with AI
  • 6 Months
New
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
KnowledgeHut upGradKnowledgeHut upGradSAFe® 6.0 Certified ScrumMaster (SSM) Training
  • Self-Paced
upGrad KnowledgeHutupGrad KnowledgeHutCertified ScrumMaster®(CSM) Training
  • 16 Hours
upGrad KnowledgeHutupGrad KnowledgeHutLeading SAFe® 6.0 Certification
  • 16 Hours
KnowledgeHut upGradKnowledgeHut upGradPMP® certification
  • Self-Paced
upGrad KnowledgeHutupGrad KnowledgeHutAWS Solutions Architect Certification
  • 32 Hours
upGrad KnowledgeHutupGrad KnowledgeHutAzure Administrator Certification (AZ-104)
  • 24 Hours
KnowledgeHut upGradKnowledgeHut upGradAWS Cloud Practioner Essentials Certification
  • 1 Week
KnowledgeHut upGradKnowledgeHut upGradAzure Data Engineering Training (DP-203)
  • 1 Week
MICAMICAAdvanced Certificate in Digital Marketing and Communication
  • 6 Months
Bestseller
MICAMICAAdvanced Certificate in Brand Communication Management
  • 5 Months
Popular
IIM KozhikodeIIM KozhikodeProfessional Certification in HR Management and Analytics
  • 6 Months
Bestseller
Duke CEDuke CEPost Graduate Certificate in Product Management
  • 4-8 Months
Bestseller
Loyola Institute of Business Administration (LIBA)Loyola Institute of Business Administration (LIBA)Executive PG Programme in Human Resource Management
  • 11 Months
Popular
Goa Institute of ManagementGoa Institute of ManagementExecutive PG Program in Healthcare Management
  • 11 Months
IMT GhaziabadIMT GhaziabadAdvanced General Management Program
  • 11 Months
Golden Gate UniversityGolden Gate UniversityProfessional Certificate in Global Business Management
  • 6-8 Months
upGradupGradContract Law Certificate Program
  • Self paced
New
IU, GermanyIU, GermanyMaster of Business Administration (90 ECTS)
  • 18 Months
Bestseller
IU, GermanyIU, GermanyMaster in International Management (120 ECTS)
  • 24 Months
Popular
IU, GermanyIU, GermanyB.Sc. Computer Science (180 ECTS)
  • 36 Months
Clark UniversityClark UniversityMaster of Business Administration
  • 23 Months
New
Golden Gate UniversityGolden Gate UniversityMaster of Business Administration
  • 20 Months
Clark University, USClark University, USMS in Project Management
  • 20 Months
New
Edgewood CollegeEdgewood CollegeMaster of Business Administration
  • 23 Months
The American Business SchoolThe American Business SchoolMBA with specialization
  • 23 Months
New
Aivancity ParisAivancity ParisMSc Artificial Intelligence Engineering
  • 24 Months
Aivancity ParisAivancity ParisMSc Data Engineering
  • 24 Months
The American Business SchoolThe American Business SchoolMBA with specialization
  • 23 Months
New
Aivancity ParisAivancity ParisMSc Artificial Intelligence Engineering
  • 24 Months
Aivancity ParisAivancity ParisMSc Data Engineering
  • 24 Months
upGradupGradData Science Bootcamp with AI
  • 6 Months
Popular
upGrad KnowledgeHutupGrad KnowledgeHutData Engineer Bootcamp
  • Self-Paced
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Bestseller
KnowledgeHut upGradKnowledgeHut upGradBackend Development Bootcamp
  • Self-Paced
upGradupGradUI/UX Bootcamp
  • 3 Months
upGradupGradCloud Computing Bootcamp
  • 7.5 Months
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 5 Months
upGrad KnowledgeHutupGrad KnowledgeHutSAFe® 6.0 POPM Certification
  • 16 Hours
upGradupGradDigital Marketing Accelerator Program
  • 05 Months
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
upGradupGradData Science Bootcamp with AI
  • 6 Months
Popular
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Bestseller
upGradupGradUI/UX Bootcamp
  • 3 Months
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 4 Months
upGradupGradCertificate Course in Business Analytics & Consulting in association with PwC India
  • 06 Months
upGradupGradDigital Marketing Accelerator Program
  • 05 Months

Supervised vs Unsupervised Learning: Difference Between Supervised and Unsupervised Learning

Updated on 14 March, 2023

5.6K+ views
10 min read

Introduction

Machine Learning is broadly classified into three types, namely Supervised Learning, Unsupervised Learning, and Reinforcement Learning. Reinforcement learning is still new and under rapid development, so let’s just ignore that in this article and deep dive into Supervised and Unsupervised Learning.

Before moving into the actual definitions and usages of these two types of learning, let us first get familiar with Machine Learning. Machine learning is an application of artificial intelligence that provides systems with the ability to automatically learn and improve from experience without being explicitly programmed, and this is just the textbook definition of Machine Learning, as this article is mainly written for the newbies of Data Science and Artificial Intelligence field let me make this more clear and interesting for you so that you can understand and interpret it better.

Let us consider a baby as our machine and we need to help the baby learn the different numbers in our number system. In order to help the baby learn we need to show the baby a different number and tell what each number is.

Read: Machine Learning Project Ideas

Doing this part repeatedly helps the baby learn and memorize the numbers. This is nothing but the ability to automatically learn and improve from experience without being explicitly programmed i.e. Machine Learning.

Enrol for the Machine Learning Course from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.

1. Supervised Learning

Let us start again with the classic textbook definition of Supervised Learning and make ourselves familiar with the baby example that we earlier took. Supervised learning is the machine learning task of learning a function that maps an input to an output based on example input-output pairs. It infers a function from labeled training data consisting of a set of training examples.

I hate the definitions that are written in any textbook as they are so formal to understand, rather I would prefer a friend to explain the definition in his own thoughts. In the long run whenever I try to recollect a definition, eventually the explanation given by a friend with an example pops up and makes my life easier. So, in this article let me be that friend to you.

Let us again take the baby example we considered earlier, in this case, we need to make the baby learn and identify the different fruits that we have. Let us consider Apple and Orange as our two fruits, and we start by showing these two pictures to the baby. We also tell the baby which picture is which fruit.

Looking at those pictures, the baby learns that the fruit will be round and red colour fruit is Apple, and orange colour fruit is Orange. Now let us show the baby a new picture of an Orange and ask him to find out whether the picture is Apple or Orange.

The baby predicts that the fruit is Orange. The baby correctly predicts the fruit as Orange because we have labelled the two fruits Apple and Orange into two categories and have asked the baby to learn what fruit is what. This is how Supervised Machine Learning works if we replace a machine with a baby.

Supervised Machine Learning is further classified into two types of problems known as Classification and Regression.

2. Classification

From the name itself, we can get to know that this is a Machine Learning problem where we need to classify the given data into two or more classes. The above example that we have taken is a Classification problem as we need to classify the given pictures into either an Apple or Orange class.

When we have only two classes to classify our data, then it is called Binary Classification. But in real-world data, we tend to have more than one class and it is called Multi-Class Classification. These types of learning are used by the majority to identify spam emails, classify customers, check whether a customer Churns from the operator, and many more use cases.

Industry applications of classification

Some of the real-life applications of classification are –

  1. Image classification
  2. Fraud detection
  3. Speech recognition 
  4. Spam filtering
  5. Document classification
  6. Facial recognition
  7. Medical diagnostic tests
  8. Malware classification
  9. Product categorisation
  10. Customer behaviour prediction

Types of Classification Tasks 

Some of the classification tasks in machine learning are mentioned below-

  • Predictive Modelling

Classification is a problem of predictive modelling where the class label stands to be in anticipation.

  • Binary classification 

As the word binary suggests, in classification binary is a type of problem that has only two possible outcomes. For example, (yes or no), (true or false), (spam or not spam), and so on.

  • Multi-class classification

Opposed to binary classification, multi-class classification is a type of problem that can have more than two possible outcomes. In this case, each problem is assigned to only one label. For example, classifying images, classifying species, and so on.

  • Multi-label classification

It is a type of problem that may have more than one assigned class label to the data. The model would have multiple outcomes in this scenario. For example, an image can have multiple objects.

  • Imbalanced classification

In the presence of an unequal distribution of data, an imbalance is created. Imbalance classification refers to the classification method where the data distribution is skewed or biased.

Also Read: Career in Machine Learning

3. Regression

Regression on the other hand, deals with continuous data, such as predicting your salary based on experience. In this case, we do not need to put the data into any classes but need to predict the continuous value based on the continuous data we have.

These types of problems have continuous columns in their data set, whereas Classification tends to have categorical columns. These types of learning are used to predict the financial growth in the next quarter for any company, student marks based on his previous marks, and many more.

Industry applications of Regression

  1. Forecasting 
  2. Comparing with competition
  3. Capital Asset Pricing Model (CAPM)
  4. Problem identification
  5. Better decision making

Types of regression analysis

Some of the different types of regression analysis are mentioned below –

  • Simple linear regression

It is a relationship between a dependent variable and an independent variable. The simple linear regression model reveals a liner or a slanted straight line. 

The model has an expression, as depicted below;

Y= a+bX+ϵ

Where, 

  • Y= dependent variable
  • X= independent variable 
  • a= intercept
  • b= slope
  • ϵ= residual 
  • Multiple linear regression

It is a statistical process that helps in using multiple explanatory factors to predict the outcome. Multiple linear regression is a method to represent a relationship between dependent and independent variables.

The mathematical representation for MLR is;

y=ß0+ ß1 x1+ …………..ßn xn + ϵ

Where,

  • y = the dependent variable’s predicted value
  • B0 = the y-intercept
  • B1X1= B1 is the coefficient for regression of the first independent variable X1 
  • … = Repeat for as many independent variables as you’re testing.
  • BnXn = the last independent variable’s regression coefficient
  • ϵ = model error 
  • Non-linear regression

Data are fitted to a model and then numerically displayed. The non-linear regression connects two variables (X and Y) in a curved (non-linear) shape.

The model aims to minimise the sum of squares as the sum of squares is a statistic which helps to track how much Y observations differ from the non-linear function which was used to anticipate Y.

4. Unsupervised Learning

Unsupervised learning is a type of machine learning that looks for previously undetected patterns in a data set with no pre-existing labels and with a minimum of human supervision.

In contrast to supervised learning which usually makes use of human-labeled data, unsupervised learning, also known as self-organization, allows for the modeling of probability densities over inputs. Let us consider the baby example to understand Unsupervised Machine Learning better.

Let us use a group of cats’ and dogs’ pictures as input in this example, in earlier examples the baby knows that the pictures are of Apple and Orange as we have labelled and categorized them.

In this case, the baby doesn’t know anything and hence cannot categorize which one is a cat and which one is a dog. But can tell that few of the pictures look similar when compared to the other few. In this case, we cannot label the data, but we can still find patterns in the data. This is how Unsupervised Machine Learning works.

Applications of unsupervised learning

Some of the real-life application of unsupervised learning is-

  1. Customer segmentation 
  2. Understanding of different customer groups
  3. Clustering DNA patterns 
  4. Anomaly detection 
  5. Recommender systems 

5. Clustering

The above-taken example clearly describes the Clustering problem, and we need to cluster our dataset based on the patterns that we find in our data. Clustering is a very important Machine Learning problem, and many companies tend to use this technique to find valuable patterns and insights from their data.

Examples of clustering

The supervised and unsupervised learning examples differ. The industry examples for unsupervised learning are mentioned below-

  • Anomaly detection

Any type of outliers can be detected with the help of clustering. Organisations with invested efforts in transportation and logistics may use anomaly detection to identify the logistical obstacles.

  • Customer and market segmentation 

Clustering can help the users to group people having similar traits and create customer personas. This yields results in  effective targeting and marketing.

Types of clustering

There are various types of clustering which can be used in different ways-

  • Exclusive clustering- One piece of data belongs to only one cluster.
  • Overlapping clustering- The data items can be a member of more than one cluster.
  • Hierarchical clustering- Helps to create a hierarchy of the cluster items.

Clustering Algorithms

There are various clustering algorithms that are at play- 

  • K-means

It is used for exclusive clustering. It helps in putting the data into the predefined numbers or clusters known as K. Items get assigned to the nearest cluster centre called centroids. 

  • Fuzzy K- means

It is an extended part of the K- means algorithm. Fuzzy K- means denotes that the data points can belong to more than one cluster with a certain level of closeness with one another.

  • Gaussian Mixture Models (GMM)

It is used in probabilistic clustering because of the unknown mean or variance.  The model assumes that there is a certain number of Gaussian distributions. The algorithm helps to decide which cluster the data belongs to.

So these were the major difference between supervised and unsupervised learning. Now let’s summarise the differences in the form of a table;

Supervised vs Unsupervised learning
Properties Supervised Unsupervised
Input data Labelled Unlabelled
Usage time The users know what they are looking for in the data The users do not know what they are looking for in the data
Applicability Classification and regression problems Clustering and association problems
Result in accuracy Accurate results Less accurate results
Algorithms
  • Super vector machines
  • Decision trees
  • Naive Bayes
  • K means
  • Gaussian Mixture Models
  • Principal Component Analysis
Industry applications
  • Spam filters
  • Demand forecasting
  • Image recognition
  • Recommender systems
  • Anomaly detection
  • Customer segmentation

Conclusion

In this article, we got to know about the different types of Machine Learning, got to understand those taking an easy-to-understand example, investigated the further divisions of each learning. This article covers only the basics of Machine Learning problems, each type of problem has different types of Machine Learning Algorithms.         

If you’re interested to learn more about machine learning, check out IIIT-B & upGrad’s PG Diploma in Machine Learning & AI which is designed for working professionals and offers 450+ hours of rigorous training, 30+ case studies & assignments, IIIT-B Alumni status, 5+ practical hands-on capstone projects & job assistance with top firms.

Frequently Asked Questions (FAQs)

1. What is an example of unsupervised learning?

The examples of unsupervised learning are mentioned below - K means, KNN, Anomaly detection, Hierarchical clustering, Apriori algorithm, and Neural networks.

2. What are the two types of supervised learning?

Some of the types of supervised learning are Regression, Naive Bayes, Classification, and Random forest

3. What are the two main types of unsupervised learning?

The two main types of unsupervised learning are Clustering - It helps in grouping the unlabelled data based on their differences and similarities. Association rules - It helps to find a relationship between the points in the dataset.

4. What is an example of supervised learning?

Some examples of supervised learning are Prediction of house prices, Classification between two different items like cats and dogs, and Weather forecasting