- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Top 5 Important Text Mining Applications in 2024
Updated on 03 January, 2024
6.18K+ views
• 10 min read
Today, we have an abundance of information available to us on the internet. But, most of it is contained in the form of unstructured text. Enterprises that hold this data find it difficult to store, process, and analyze it. Similarly, retrieving useful information from such unstructured data sources, too, is a hassle. This difficulty in finding only the relevant information may prove critical in certain sectors, such as healthcare and finance. This is where text mining comes to our rescue.
Text mining refers to the process of extracting high-quality information from unstructured data, quickly. It also ensures that the unstructured data can be managed easily, making it accessible and useful for businesses and customers alike. Text mining can be used in various industries for streamlining processes and improving their efficiencies. Some of the text mining applications across multiple sectors are discussed below –
How these five text mining applications can help in various business operations
1. Servicing customers
One of the beneficial text mining applications is its use in customer care services. We are all aware of the difficulties faced by B2C enterprises in providing high-quality service to their customers. Customer care representatives are always bombarded with tons of requests and queries which can become difficult to handle.
This over-influx of data can lead to a degradation in the quality of customer care services provided. It can lead to damage to brand reputation and drive away customers. But, with text mining, enterprises can improve their customer care services significantly.
With natural language processing capabilities of a text analytics software, enterprises can easily analyze textual data collected from customers in the form of surveys, complaint tickets, and other sources. The analytics software can then send an automated response to the customer based on their queries and complaints. This helps reduce the work burden on employees. This can lead to enterprises improving their quality of service, speed, and effectiveness in solving customers’ issues.
Text mining Python is also getting a lot of attention these days. By generating textual data from many sources, such as surveys, user comments, and user calls, etc., businesses are investing in text analytics tools to enhance their overall customer experience.
2. Contextual digital advertising
Digital marketing, in a way, has eclipsed traditional marketing practices. But, digital marketing is not a child’s play. When it comes to having web ads, the failure or success depends upon what ads are run and where they are displayed.
Enterprises might have the best marketing campaign with eye-catchy ads, but, if they are not displayed to the correct end-user, they may end up being of no value. This is where text mining applications and tools step in. With text mining, enterprises can run contextual web ad campaigns that bring them a high ROI. By understanding the context on a webpage with the help of text mining software, they can place ads that are relevant to the information contained in the webpage.
This increases the chance of the click-through rate for the ads and leading to a sale, as users will be more likely to click on an ad showing a similar product or providing related information to the subject they are already reading on. For instance, an advertisement for a refrigerator will perform better on a web page talking about home appliances, rather than a webpage talking about baby food.
Read more: Digital Marketing vs Traditional Marketing
3. Preventing cyber crimes
Unfortunately, the rise of internet use has also increased the instances of cyber crimes such as phishing and cyberbullying, to name a few. A cyber-security app with text mining capabilities can help detect hidden information, such as malicious code or scripts, in unstructured messages. This can help reduce instances of financial cybercrimes, such as phishing. Similarly, text mining applications can also help detect words that are commonly used for bullying, threatening, or other harmful activities on the internet.
Explore our Popular Data Science Degrees
Law enforcement agencies or other responsible enterprises can ensure that instances of cyberbullying are reduced by monitoring content containing such words by employing text mining software.
Read our popular Data Science Articles
4. Detecting insurance frauds
Insurance companies usually face instances of false insurance claims. The entire process of insurance claim is dependent on unstructured data, in the form of customer details, cause of insurance claim, etc. It becomes difficult for enterprises to manage such large volumes of data, process claims quickly, and also ensure that the claim filed by the customer is genuine.
With text mining applications, enterprises can manage and analyze customer data seamlessly. The text mining software can analyze qualitative words to determine their relationship with other variables provided in a claims report. It can then determine whether the claim is genuine or not. Additionally, enterprises can search for information and access them quickly, with text mining. Thus, enterprises can quickly process customer claims while also keeping a check on fraudulent ones, ensuring they don’t face unnecessary financial losses.
Top Essential Data Science Skills to Learn
Our learners also read: Learn Python Online Course Free
5. Improving data management and retrieval
As mentioned earlier, enterprises face difficulty in managing and retrieving information from unstructured data. Enterprises usually gather data from multiple sources. Managing it in a single, secure location is difficult. With text mining, data can be managed in a reliable manner.
Enterprises can manage data in a single secure database with data management software based on text mining. Similarly, only the data relevant to the search query can be retrieved with the help of text mining tools. The process of filtering the required information in a short period of time is made possible with text mining tools.
Also read: Data Analytics Is Disrupting These 4 Martech Roles
Get data science certification from the World’s top Universities. Learn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career.
upGrad’s Exclusive Data Science Webinar for you –
How upGrad helps for your Data Science Career?
6. Risk Management
Analyzing, identifying, treating, and keeping track of the risks present in a given action or process inside an organization is known as risk management. Inadequate risk analysis is frequently a major factor in disappointment. It enables timely access to the required records.
7. Social Media Analysis
There are various text mining tools available that are specifically made for examining how social media networks are implemented. This enables the tracking and clarification of texts produced online by news, blogs, emails, etc.
8. Business Intelligence
Text mining techniques are now being used by businesses and business enterprises as a key component of their business information. Text mining techniques help organizations assess the strengths and weaknesses of their competitors, giving them a competitive edge in the market in addition to providing important insights about user behavior and trends.
Text Mining Techniques
Given below are the most famous text mining techniques.
1. Information Extraction
Information extraction is the most famous technique used in text mining. The process of separating pertinent information from enormous quantities of textual material is referred to as information exchange. Identifying the extraction of entities, properties, and their relationships from unstructured or semi-structured texts is the main goal of this text-mining technique.
2. Information Retrieval
The practice of collecting pertinent and related patterns from a particular set of words or phrases is known as information retrieval (IR). IR systems use several algorithms in this text-mining technology to follow and monitor user behaviors and find pertinent data as a result. The two most well-known IR systems are Google and Yahoo. Information retrieval is the method employed in text mining that is most well-known.
3. Categorization
One of the “supervised” learning methods used in text mining, this method categorizes natural language documents according to their content and assigns them to one of a predefined set of subjects. In order to find the appropriate subjects or indexes for each text document, categorization, or more precisely Natural Language Processing (NLP), is a process of gathering text documents and processing and analyzing them. In NLP, the co-referencing technique is frequently used to extract pertinent synonyms and abbreviations from textual input.
4. Clustering
One of the most important text-mining approaches is clustering. It looks for inherent textual informational structures and classifies them into useful subgroups or ‘clusters’ for additional examination. Standard text mining tools like cluster analysis help distribute data or serve as a pre-processing step for other text mining algorithms that run on identified clusters.
5. Summarisation
The practice of automatically creating a compressed version of a certain text that contains useful information for the end-user is known as text summarization. This text mining technique aims to browse through numerous text sources to provide succinct summaries of texts that contain a significant amount of information while essentially maintaining the overall content and intent of the original documents.
Conclusion
Text mining applications can be found in all the major sectors, right from insurance to customer services to digital marketing. And these are only a handful of the limitless text mining applications that we have talked about in this piece. With proper knowledge and understanding of text mining tools and techniques, text mining applications can be used in any process that involves textual data.
We hope that this piece helped you understand various text mining applications across various industries. To learn more about text mining and pursue a career as a data scientist in any of the above-mentioned sectors, check out IIIT-B & upGrad’s PG Diploma in Data Science which is created for working professionals and offers 10+ case studies & projects, practical hands-on workshops, mentorship with industry experts, 1-on-1 with industry mentors, 400+ hours of learning and job assistance with top firms.
Frequently Asked Questions (FAQs)
1. What is the difference between text mining and data mining?
Data mining is a statistical method in which the raw data is processed to extract meaningful information for the benefit of the company. To gather the information, pre-existing documents and sheets are used. Statistical techniques are used to process the raw data. Text mining is a sub-domain of data mining where the text is processed from the given documents to gather meaningful information. Instead of documents, the text is used to extract the information. The data is linguistically processed and hence computational linguistic methods are used in text processing.
2. What is unstructured data and what are its examples?
The data that is not arranged according to any pre-set data model is known as unstructured data. Out of all the data generated, around 80-90% of data is unstructured and its rate of generation is much faster than the structured data. The unstructured data can not be stored in relational databases or RDBMS. Since it comes in multiple formats, it is very difficult for traditional software to process this data. Below are some of the most common examples of unstructured data. Email message fields are unstructured but email metadata is structured to some extent and hence email is often considered semi-structured data. Text files like spreadsheets, word documents, presentations, and log files are all unstructured.
3. How can you detect frauds with text mining?
It happens often that people make false insurance claims and hence it is highly necessary to detect these frauds so that innocent people do not have to face the consequences because of these frauds. Now, since the whole insurance claim is dependent on unstructured data, it becomes very difficult for the companies to process and analyze such a large volume of data. With text mining applications, enterprises can manage and analyze customer data seamlessly. You can determine some selective words which will act as the filter to detect frauds