- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Text Summarisation in Natural Language Processing: Algorithms, Techniques & Challenges
Updated on 23 September, 2022
10.56K+ views
• 11 min read
Table of Contents
Creating a summary from a given piece of content is a very abstract process that everyone participates in. Automating such a process can help parse through a lot of data and help humans better use their time to make crucial decisions. With the sheer volume of media out there, one can be very efficient by reducing the fluff around the most critical information. We have already started seeing text summaries across the web that are automatically generated.
Top Machine Learning and AI Courses Online
If you frequent Reddit, you might’ve seen the ‘Autotldr bot’ routinely helps Redditors by summarizing linked articles in a given post. It was created in just 2011 and has already saved thousands of person-hours. There is a market for reliable text summaries, as shown by a trend of applications that do precisely that, such as Inshorts (summarizing news in 60 words or less) and Blinkist (summarizing books ).
Automatic Text Summarization, thus, is an exciting yet challenging frontier in Natural Language Processing (NLP) and Machine Learning (ML). The current developments in Automatic text Summarization are owed to research into this field since the 1950s when Hans Peter Luhn’s paper titled “The automatic creation of literature abstracts” was published.
Trending Machine Learning Skills
This paper outlined the use of features such as word frequency and phrase frequency to extract essential sentences from a document. This was followed by another critical research done by Harold P Edmundson in the late 1960s, which highlighted the presence of cue words, words used in the title appearing in the text, and the location of sentences to extract sentences of significance from a document.
Now that the world has made strides in Machine learning and publishing newer studies in the field, automatic text summarization is on the verge of becoming a ubiquitous tool to interact with information in the digital age.
Must Read: NLP Engineer Salary in India
There are primarily two main approaches to Summarizing text in NLP
Text Summarization in NLP
1. Extraction-based summarization
As the name suggests, this technique relies on merely extracting or pulling out key phrases from a document. It is then followed by combining these key phrases to form a coherent summary.
2. Abstractive-based summarization
This technique, unlike extraction, relies on being able to paraphrase and shorten parts of a document. When such abstraction is done correctly in deep learning problems, one can be sure to have consistent grammar. But, this added layer of complexity comes at the cost of being harder to develop than extraction.
There is another way to come up with higher quality summaries. This approach is called aided summarization, which entails a combined human and software effort. This too comes in 2 different flavors
- Machine-aided human summarization: extractive techniques highlight candidate passages to be included, which the human may add or remove text.
- Human aided Machine summarization: the human simply edits the output of the software.
Apart from the main approaches to summarize text, there are other bases on which text summarizers are classified. The following are those category heads:
3. Single vs. Multi-document summarization
Single documents rely on the cohesiveness and infrequent repetition of facts to generate summaries. Multi-document summarizations, on the other hand, increase the chance of redundant information and recurrence.
4. Indicative vs. informative
The taxonomy of the summaries relies on the user’s end goal. For instance, in indicative type summaries, one would expect high-level points of an article. Whereas, in an informative overview, one may expect more topic filtering to let the reader drill down the summary.
5. Document length and type
The length of the input text heavily influences the sort of summarization approach.
The largest summarization datasets, like newsroom by Cornell, have focussed on news articles, which are about 300-1000 words on average. Extractive summarizers deal with such lengths relatively well. A multipage document or chapter of a book can only be summarized adequately with more advanced approaches like hierarchical clustering or discourse analysis.
Additionally, the genre of the text influences the summarizer too. The methods that would summarize a technical white-paper would be radically different from the techniques that may be better equipped to summarize a financial statement.
In this article, we will focus on further details of the extraction summarization technique.
PageRank Algorithm
This algorithm helps search engines like google rank web pages. Let’s understand the algorithm with an example. Assume you have four web pages with different levels of connectivity between them. One may have no links to the other three; one may be connected to the other 2, one may be correlated to just one, and so on.
We can then model the probabilities of navigating from one page to another by using a matrix with n rows and columns, where n is the number of web pages. Each element within the matrix will represent the probability of transitioning from one webpage to another. By assigning the right probabilities, one can iteratively update such a matrix to come to a web page ranking.
Also Read: NLP Project & Topics
TextRank Algorithm
The reason we explored the PageRank algorithm is to show how the same algorithm can be used to rank text instead of web pages. This can be done by changing perspective by replacing links between pages to similarity between sentences and using the PageRank style matrix as a similarity score.
Implementing the TextRank algorithm
Required Libraries
- Numby
- Pandas
- Ntlk
- re
The following is an explanation of the code behind the extraction summarization technique:
Step 1
Concatenate all the text you have in the source document as one solid block of text. The reason to do that is to provide conditions so that we can execute step 2 more easily.
Step 2
We provide conditions that define a sentence such as looking for punctuation marks such as period (.), question mark (?), and an exclamation mark (!). Once we have this definition, we simply split the text document into sentences.
Step 3
Now that we have access to separate sentences, we find vector representations (word embeddings) of each of those sentences. It is now that we must understand what vector representations are. Word embeddings are a type of word representation that provides a mathematical description of words with similar meanings. In actuality, this is an entire class of techniques that represent words as real-valued vectors in a predefined vector space.
Each word is represented by a real-valued vector that has many dimensions (over 100 at times). The distribution representation is based on the usage of words and, thus, allows words used in similar ways to have similar descriptions. This allows us to naturally capture the meanings of words as by their proximity to other words represented as vectors themselves.
For this guide, we will use the Global Vectors of Word Representation (GloVe). The gloVe is the open-source distributed word representation algorithm that was developed by Pennington at Stanford. It combines the features of 2 model families, namely the global matrix factorization and local context window methods.
Step 4
Once we have the vector representation for our words, we have to extend the process to represent entire sentences as vectors. To do so, we may fetch the vector representations of the terms that constitute words in a sentence and then the mean/average of those vectors to arrive at a consolidated vector for the sentence.
Step 5
At this point, we have a vector representation for each individual sentence. It is now helpful to quantify similarities between the sentences using the cosine similarity approach. We can then populate an empty matrix with the cosine similarities of the sentences.
Step 6
Now that we have a matrix populated with the cosine similarities between the sentences. We can convert this matrix into a graph wherein the nodes represent the sentences, and the edges represent the similarity between the sentences. It is on this graph that we will use the handy PageRank algorithm to arrive at the sentence ranking.
Step 7
We now have ranked all sentences in the article in order of importance. We can now extract the top N (say 10) sentences to create a summary.
To find the code for such a method, there are many such projects on Github; this article, on the other hand, helps develop an understanding of the same.
Check out: Evolution of Language Modelling in Modern Life
Evaluation techniques
An important factor in fine-tuning such models is to have a reliable method to judge the quality of the summaries produced. This necessitates good evaluation techniques, which can be broadly classified into the following:
- Intrinsic and extrinsic evaluation:
Intrinsic: such evaluation tests the summarization system in and of itself. They mainly assess the coherence and informativeness of the summary.
Extrinsic: such evaluation tests the summarization based on how it affects some other task. It may test the impact of the summarization on tasks like relevance assessment, reading comprehension, etc.
- Inter-textual and Intra-textual:
Inter-textual: Such evaluations focus on a contrastive analysis of several summarization systems.
Intra-textual: such evaluations assess the output of a specific summarization system.
- Domain-specific and domain-independent:
Domain independent: These techniques generally apply sets of general features that can be focused on identifying information-rich text segments.
Domain-specific: These techniques utilize the available knowledge specific to a domain on a text. For example, text summarization of medical literature requires the use of sources of medical knowledge and ontologies.
- Evaluating summaries qualitatively:
The major drawback of other evaluation techniques is that they necessitate reference summaries to be able to compare the output of the automatic summaries with the model. This makes the task of evaluation hard and expensive. There is work being done to build a corpus of articles/documents and their corresponding summaries to solve this problem.
Challenges to Text Summarization
Despite highly developed tools to generate and evaluate summaries, challenges remain to find a reliable way for text summarizers to understand what is important and relevant.
As discussed, vector representation and similarity matrices attempt to find word associations, but they still do not have a reliable method to identify the most important sentences.
Another challenge in text summarization is the complexity of human language and the way people express themselves, especially in written text. Language is not only composed of long sentences with adjectives and adverbs to describe something but also relative sentences, appositions, etc. such insights may add valuable information they don’t help in establishing the main crux of information to be included into the summary.
“Anaphora problem” is another barrier in text summarization. In language, we often replace the subject in the conversation with its synonyms or pronouns. The understanding of which pronoun substitutes for which term is the “anaphora problem.”
“Cataphora problem” is the opposite problem of the anaphora problem. In these ambiguous words and explanations, a particular term is used in the text before introducing the term itself.
Enrol for the Machine Learning Course from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.
Popular AI and ML Blogs & Free Courses
Conclusion
The field of text summarization is experiencing rapid growth, and specialized tools are being developed to tackle more focused summarization tasks. With open-source software and word embedding packages becoming widely available, users are stretching the use case of this technology.
Automatic text summarization is a tool that enables a quantum leap in human productivity by simplifying the sheer volume of information that humans interact with daily. This not only allows people to cut down on the reading necessary but also frees up time to read and understand otherwise overlooked written works. It is only a matter of time that such summarizers get integrated so well that they create summaries indistinguishable from those written by humans.
If you wish to improve your NLP skills, you need to get your hands on these NLP projects. If you’re interested to learn more about machine learning, check out IIIT-B & upGrad’s PG Diploma in Machine Learning & AI which is designed for working professionals and offers 450+ hours of rigorous training, 30+ case studies & assignments, IIIT-B Alumni status, 5+ practical hands-on capstone projects & job assistance with top firms.
Frequently Asked Questions (FAQs)
1. What are the uses of NLP?
NLP or Natural Language Processing, one of the most sophisticated and interesting modern technologies, is used in diverse ways. Its top applications include – automatic word correction, auto prediction, chatbots and voice assistants, speech recognition in virtual assistants, sentiment analysis of human speech, email and spam filtering, translation, social media analytics, target advertising, text summarization, and resume scanning for recruitment, among others. Further advancements in NLP giving rise to concepts like Natural Language Understanding (NLU) are helping achieve higher accuracy and far superior outcomes from complex tasks.
2. Do I have to study mathematics to learn NLP?
With the abundance of resources available both offline and online, it is now easier to access study material designed for learning NLP. These study resources are all about specific concepts of this vast field called NLP rather than the bigger picture. But if you wonder whether mathematics is part of any of NLP concepts, then you must know that maths is an essential part of NLP. Mathematics, especially probability theory, statistics, linear algebra, and calculus, are the foundational pillars of the algorithms that drive NLP. Having a basic understanding of statistics is helpful so that you can build upon it as required. Still, there is no way to learn Natural Language processing without getting into mathematics.
3. What are some NLP techniques used to extract information?
In this digital age, there has been a massive surge in the generation of unstructured data, mainly in the form of audio, images, videos, and texts from various channels like social media platforms, customer complaints, and surveys. NLP helps extract useful information from volumes of unstructured data, which can help businesses. There are five common NLP techniques that are used to extract insightful data, namely – named entity recognition, text summarization, sentiment analysis, aspect mining, and topic modeling. There are many other data extraction methods in NLP, but these are the most popularly used.
RELATED PROGRAMS