- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Top 5 Applications of Machine Learning Algorithms Using Cloud
Updated on 10 April, 2024
11.71K+ views
• 9 min read
Machine Learning (ML), a subset of Artificial Intelligence (AI), aims to create systems/machines that can automatically learn from data patterns and through experience and improve continually at their predictions, without being explicitly programmed. Essentially, Machine Learning involves the study of algorithms and the development of computer programs that can access data and use it to train themselves.
Top Machine Learning and AI Courses Online
However, applying machine learning algorithms (decision tree, logistic regression, linear regression, SVM, KNN, etc.) to massive amounts of data raised can be pretty challenging for ML practitioners. Since traditional ML libraries do not support the processing of massive datasets, new and innovative approaches were required.
Furthermore, ML was way beyond the reach of small and medium-sized enterprises – it was a costly affair to leverage and implement ML technologies and solutions in the business infrastructure. Enter – the cloud. You may ask why machine learning in the cloud?
Machine Learning applications can be enhanced and expanded when coupled with the cloud. The integration of Machine Learning in the cloud is termed as the “intelligent cloud.” While the cloud is primarily used for computing, networking, and storage, with Cloud Machine Learning, the capabilities of both the cloud and ML algorithms will increase significantly.
Read: 4 Key Benefits of Machine Learning in Cloud
For instance, Machine Learning is intrinsically a time-consuming task, but with the cloud computing paradigm, ML tasks can be sped up to a great extent. Consequently, even popular Statistics tools such as R, Octave, and Python, too, transitioned into the cloud.
Trending Machine Learning Skills
Today, most cloud providers offering ML capabilities, including the top-leaders in the cloud business – AWS, Google, and Microsoft – provide support for three types of predictions:
- Binary prediction – This type of ML prediction deals with “yes” or “no” responses. It is primarily used for fraud detection, recommendation engines, and order processing, to name a few.
- Category prediction – It this type of prediction, a dataset is observed and based on the gathered information from it, the dataset it placed under a specific category. For instance, insurance companies use category prediction to categorize different types of claims.
- Value prediction – This type of prediction finds patterns within the accumulated data by using learning models to show the quantitative measure of all the likely outcomes. Companies use it to predict a rough number of how many units of a product will sell in the near future (e.g., the next month). It allows them to shape their manufacturing plans accordingly.
What are the advantages of Machine Learning in the cloud?
Here are the 3 core advantages of Cloud Machine Learning:
- The cloud makes it possible for companies/enterprises to experiment with ML technologies and scale up as and when need as projects go into production and the demand increases.
- The pay-per-use model of cloud platforms presents an affordable solution for companies who wish to leverage ML capabilities for their business without spending a ton of money.
- With the cloud, you don’t require advanced Data Science skills to access and leverage various ML functionalities.
Applications of Machine Learning Algorithms using the Cloud
1. Cognitive Cloud
The cloud stores massive amounts of data which becomes the source of learning for ML algorithms. Since billions of people around the globe use cloud platforms to store data, it presents a wonderful opportunity for ML algorithms to leverage that data and learn from it. It other words, ML algorithms can shift the cloud paradigm from cloud computing to cognitive computing.
Cognitive computing pertains to technology platforms that are designed on the principles of AI and signal processing. It incorporates machine learning, natural language processing, speech/object recognition, human-computer interaction, and narrative generation. When infused with ML capabilities, the cloud becomes “Cognitive Cloud” that can make cognitive computing applications accessible for the common mass.
IBM Cognitive and Microsoft’s Azure Cognitive Services are excellent examples of this – these platforms allow you to develop intelligent apps without any hassle.
2. Chatbots and Smart Personal Assistants
Chatbots and personal assistants have taken over both the individual and business landscape. Smart virtual assistants like Siri, Alexa, and Cortana can perform an array of tasks for you and even interact with you like another human being. However developed they might be, chatbots and virtual assistants are still at their nascent stage. They are still evolving, still learning. Hence, it is natural for them to have limitations.
When integrated with the cloud, chatbots and smart personal assistants will have a vast pool of data at their disposal to learn from. As a result, their learning capabilities will get a considerable boost. With time, chatbots and personal assistants will evolve to completely do away with any form of human intervention or support.
3. IoT Cloud
IoT Cloud is a cloud platform specifically designed to store and process the data generated by the Internet of Things (IoT). Salesforce’s IoT Cloud is powered by Thunder – a “massively scalable real-time event processing engine.“
IoT Cloud can intake colossal amounts of data generated by connected devices, sensors, applications, websites, and customers and trigger actions for real-time responses. It can be used for various real-world scenarios. For instance, by connecting to personal devices at use, IoT could know the status of flights and rebooking flight tickets for passengers whose flights got delayed or cancelled.
4. Business Intelligence
Thanks to Machine Learning cloud computing, business intelligence (BI) services are also becoming increasingly intelligent. Cloud Machine Learning has two-fold benefits for BI. While the cloud platform can store vast volumes of customer and company data, ML algorithms can process and analyze that data to find innovative solutions.
With the customer data at hand, ML algorithms can help businesses gain a more in-depth and better understanding of their target audience – purchasing behavior, preferences, needs, pain points, etc. Accordingly, companies can create product development and marketing strategies to boost sales and increase ROI.
Another area where ML has a significant bearing is customer experience and satisfaction. As businesses understand their customers better, they create products that can address their pain points and needs. This leads to higher customer satisfaction. Also, ML algorithms can create intuitive recommendation engines and chatbots for better customer experience.
This is just one facet of how the combination of Machine Learning algorithms and cloud computing is improving the BI systems.
5. AI-as-a-Service
Today, many cloud services providers are offering AI capabilities via open-source AI-as-a-Service (AIaaS) platforms. This is a highly cost-effective model of deploying AI functionalities to businesses, particularly small and medium-sized firms that are restrained by financial limitations.
AIaaS offers customers a host of AI tools and functionalities required for AI/ML model building, intelligent automation, cognitive computing, and much more. Needless to say, AIaaS makes everything super-fast and efficient. The program that upGrad has launched can be of great help to understand Machine Learning and Cloud better. The program is an Advanced Certification Program in Machine Learning & Cloud with IIT Madras
Popular AI and ML Blogs & Free Courses
Conclusion
As more cloud services providers and businesses realize the potential of Machine Learning in the cloud, it will spur the demand for Cloud Machine Learning platforms. While ML makes cloud computing much more enhanced, efficient, and scalable, the cloud platform expands the horizon for ML applications. Thus, both are intricately interrelated, and when combined into a symbiotic relationship, the business connotations can be tremendous.
If you are interested to learn about cloud computing and Machine learning, upGrad in collaboration with IIIT- Bangalore, has launched the Master of Science in Machine Learning & AI. The course will equip you with the necessary skills for this role: maths, data wrangling, statistics, programming, cloud-related skills, as well as ready you for getting the job of your dreams.
Frequently Asked Questions (FAQs)
1. How is machine learning used in the cloud?
Machine learning is really the next wave of cloud computing. Given the unlimited amount of data in the cloud, machine learning acceleration can be done by cloud computing. In addition, with the rapid growth of machine learning, the demand for the service will continue to grow. Many organisations are starting to use machine learning for a number of reasons. The cloud offers an ideal environment for machine learning with the vast amounts of data that can be collected and processed. Machine learning depends on large amounts of data to identify patterns and make predictions. The cloud offers a scalable, on-demand environment to collect, store, curate and process data.
2. Which cloud is better for machine learning?
Amazon Web Services (AWS) is a cloud computing platform originally built on top of Amazon's EC2 service. Microsoft Azure is a cloud computing service created by Microsoft for building, deploying and managing applications and services through a global network of Microsoft-managed data centres. Cloud computing is nothing but renting hardware, software and infrastructure from one of the providers. Nowadays, every other company is trying to get into the cloud computing business. So, the cloud computing industry is very competitive. As a result, there are lots of cloud computing providers other than AWS (Amazon Web Services) and Microsoft Azure.
3. What are the benefits of cloud services?
Cloud services are cheaper, more convenient and more scalable than traditional IT infrastructure. Cloud services are available on demand, and you only pay for what you need when you need it. There is no capital expense and no need to forecast your IT budget. Cloud services are more convenient because they are available on demand.
4. How is artificial intelligence used in cloud computing?
The concept of artificial intelligence cloud computing involves machine learning capabilities merging with cloud computing environments. Artificial intelligence tools are increasingly being employed to deliver improved value on existing cloud-based platforms. Companies providing SaaS capabilities include AI tools in software packages with the intention of providing greater value to consumers. Integrating artificial intelligence and cloud computing is advantageous in streamlining complex operations, extracting meaningful insights from massive volumes of data, and ensuring seamless delivery of services and products. This helps improve cost efficiency, enhances productivity, boosts processing power and capabilities, and also offers consumers the ability to harness Big Data.
5. How has artificial intelligence improved cloud computing?
Artificial intelligence is working in conjunction with business cloud-based environments to make organizations more strategic, data-driven, and efficient. While cloud-based computing offers enterprises a greater degree of agility, productivity and cost-savings by hosting apps and data in the cloud, artificial intelligence is helping them manage their data more efficiently, carry out tasks like data mining more closely, streamline workloads automatically and also deliver enriched customer experiences. AI cloud can help the system manage routine processes by itself so that IT teams can focus on the core aspects of strategic activities that drive greater value to the business. These are just a few examples; the AI cloud is transforming businesses from every angle.
RELATED PROGRAMS