- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
12 Data Science Case Studies: Across Various Industries
Updated on 28 October, 2024
24.22K+ views
• 15 min read
Table of Contents
Data science has become popular in the last few years due to its successful application in making business decisions. Data scientists have been using data science techniques to solve challenging real-world issues in healthcare, agriculture, manufacturing, automotive, and many more. For this purpose, a data enthusiast needs to stay updated with the latest technological advancements in AI. An excellent way to achieve this is through reading industry data science case studies. I recommend checking out Data Science With Python course syllabus to start your data science journey.
In this discussion, I will present some case studies to you that contain detailed and systematic data analysis of people, objects, or entities focusing on multiple factors present in the dataset. Almost every industry uses data science in some way. You can learn more about data science fundamentals in this Data Science course content.
Let’s look at the top data science case studies in this article so you can understand how businesses from many sectors have benefitted from data science to boost productivity, revenues, and more.
List of Data Science Case Studies 2024
- Hospitality: Airbnb focuses on growth by analyzing customer voice using data science. Qantas uses predictive analytics to mitigate losses
- Healthcare: Novo Nordisk is Driving innovation with NLP. AstraZeneca harnesses data for innovation in medicine
- Covid 19: Johnson and Johnson uses data science to fight the Pandemic
- E-commerce: Amazon uses data science to personalize shopping experiences and improve customer satisfaction
- Supply chain management: UPS optimizes supply chain with big data analytics
- Meteorology: IMD leveraged data science to achieve a record 1.2m evacuation before cyclone ''Fani''
- Entertainment Industry: Netflix uses data science to personalize the content and improve recommendations. Spotify uses big data to deliver a rich user experience for online music streaming
- Banking and Finance: HDFC utilizes Big Data Analytics to increase income and enhance the banking experience
- Urban Planning and Smart Cities: Traffic management in smart cities such as Pune and Bhubaneswar
- Agricultural Yield Prediction: Farmers Edge in Canada uses Data science to help farmers improve their produce
- Transportation Industry: Uber optimizes their ride-sharing feature and track the delivery routes through data analysis
- Environmental Industry: NASA utilizes Data science to predict potential natural disasters, World Wildlife analyzes deforestation to protect the environment
Top 12 Data Science Case Studies
1. Data Science in Hospitality Industry
In the hospitality sector, data analytics assists hotels in better pricing strategies, customer analysis, brand marketing, tracking market trends, and many more.
Airbnb focuses on growth by analyzing customer voice using data science. A famous example in this sector is the unicorn ''Airbnb'', a startup that focussed on data science early to grow and adapt to the market faster. This company witnessed a 43000 percent hypergrowth in as little as five years using data science. They included data science techniques to process the data, translate this data for better understanding the voice of the customer, and use the insights for decision making. They also scaled the approach to cover all aspects of the organization. Airbnb uses statistics to analyze and aggregate individual experiences to establish trends throughout the community. These analyzed trends using data science techniques impact their business choices while helping them grow further.
Travel industry and data science
Predictive analytics benefits many parameters in the travel industry. These companies can use recommendation engines with data science to achieve higher personalization and improved user interactions. They can study and cross-sell products by recommending relevant products to drive sales and increase revenue. Data science is also employed in analyzing social media posts for sentiment analysis, bringing invaluable travel-related insights. Whether these views are positive, negative, or neutral can help these agencies understand the user demographics, the expected experiences by their target audiences, and so on. These insights are essential for developing aggressive pricing strategies to draw customers and provide better customization to customers in the travel packages and allied services. Travel agencies like Expedia and Booking.com use predictive analytics to create personalized recommendations, product development, and effective marketing of their products. Not just travel agencies but airlines also benefit from the same approach. Airlines frequently face losses due to flight cancellations, disruptions, and delays. Data science helps them identify patterns and predict possible bottlenecks, thereby effectively mitigating the losses and improving the overall customer traveling experience.
How Qantas uses predictive analytics to mitigate losses
Qantas, one of Australia's largest airlines, leverages data science to reduce losses caused due to flight delays, disruptions, and cancellations. They also use it to provide a better traveling experience for their customers by reducing the number and length of delays caused due to huge air traffic, weather conditions, or difficulties arising in operations. Back in 2016, when heavy storms badly struck Australia's east coast, only 15 out of 436 Qantas flights were cancelled due to their predictive analytics-based system against their competitor Virgin Australia, which witnessed 70 cancelled flights out of 320.
2. Data Science in Healthcare
The Healthcare sector is immensely benefiting from the advancements in AI. Data science, especially in medical imaging, has been helping healthcare professionals come up with better diagnoses and effective treatments for patients. Similarly, several advanced healthcare analytics tools have been developed to generate clinical insights for improving patient care. These tools also assist in defining personalized medications for patients reducing operating costs for clinics and hospitals. Apart from medical imaging or computer vision, Natural Language Processing (NLP) is frequently used in the healthcare domain to study the published textual research data.
A. Pharmaceutical
Driving innovation with NLP: Novo Nordisk. Novo Nordisk uses the Linguamatics NLP platform from internal and external data sources for text mining purposes that include scientific abstracts, patents, grants, news, tech transfer offices from universities worldwide, and more. These NLP queries run across sources for the key therapeutic areas of interest to the Novo Nordisk R&D community. Several NLP algorithms have been developed for the topics of safety, efficacy, randomized controlled trials, patient populations, dosing, and devices. Novo Nordisk employs a data pipeline to capitalize the tools' success on real-world data and uses interactive dashboards and cloud services to visualize this standardized structured information from the queries for exploring commercial effectiveness, market situations, potential, and gaps in the product documentation. Through data science, they are able to automate the process of generating insights, save time and provide better insights for evidence-based decision making.
B. BioTech
How AstraZeneca harnesses data for innovation in medicine. AstraZeneca is a globally known biotech company that leverages data using AI technology to discover and deliver newer effective medicines faster. Within their R&D teams, they are using AI to decode the big data to understand better diseases like cancer, respiratory disease, and heart, kidney, and metabolic diseases to be effectively treated. Using data science, they can identify new targets for innovative medications. In 2021, they selected the first two AI-generated drug targets collaborating with BenevolentAI in Chronic Kidney Disease and Idiopathic Pulmonary Fibrosis.
Data science is also helping AstraZeneca redesign better clinical trials, achieve personalized medication strategies, and innovate the process of developing new medicines. Their Center for Genomics Research uses data science and AI to analyze around two million genomes by 2026. Apart from this, they are training their AI systems to check these images for disease and biomarkers for effective medicines for imaging purposes. This approach helps them analyze samples accurately and more effortlessly. Moreover, it can cut the analysis time by around 30%.
AstraZeneca also utilizes AI and machine learning to optimize the process at different stages and minimize the overall time for the clinical trials by analyzing the clinical trial data. Summing up, they use data science to design smarter clinical trials, develop innovative medicines, improve drug development and patient care strategies, and many more.
C. Wearable Technology
Wearable technology is a multi-billion-dollar industry. With an increasing awareness about fitness and nutrition, more individuals now prefer using fitness wearables to track their routines and lifestyle choices.
Fitness wearables are convenient to use, assist users in tracking their health, and encourage them to lead a healthier lifestyle. The medical devices in this domain are beneficial since they help monitor the patient's condition and communicate in an emergency situation. The regularly used fitness trackers and smartwatches from renowned companies like Garmin, Apple, FitBit, etc., continuously collect physiological data of the individuals wearing them. These wearable providers offer user-friendly dashboards to their customers for analyzing and tracking progress in their fitness journey.
3. Covid 19 and Data Science
In the past two years of the Pandemic, the power of data science has been more evident than ever. Different pharmaceutical companies across the globe could synthesize Covid 19 vaccines by analyzing the data to understand the trends and patterns of the outbreak. Data science made it possible to track the virus in real-time, predict patterns, devise effective strategies to fight the Pandemic, and many more.
How Johnson and Johnson uses data science to fight the Pandemic
The data science team at Johnson and Johnson leverages real-time data to track the spread of the virus. They built a global surveillance dashboard (granulated to county level) that helps them track the Pandemic's progress, predict potential hotspots of the virus, and narrow down the likely place where they should test its investigational COVID-19 vaccine candidate. The team works with in-country experts to determine whether official numbers are accurate and find the most valid information about case numbers, hospitalizations, mortality and testing rates, social compliance, and local policies to populate this dashboard. The team also studies the data to build models that help the company identify groups of individuals at risk of getting affected by the virus and explore effective treatments to improve patient outcomes.
4. Data Science in E-commerce
In the e-commerce sector, big data analytics can assist in customer analysis, reduce operational costs, forecast trends for better sales, provide personalized shopping experiences to customers, and many more.
Amazon uses data science to personalize shopping experiences and improve customer satisfaction. Amazon is a globally leading eCommerce platform that offers a wide range of online shopping services. Due to this, Amazon generates a massive amount of data that can be leveraged to understand consumer behavior and generate insights on competitors' strategies. Data science case studies reveal how Amazon uses its data to provide recommendations to its users on different products and services. With this approach, Amazon is able to persuade its consumers into buying and making additional sales. This approach works well for Amazon as it earns 35% of the revenue yearly with this technique. Additionally, Amazon collects consumer data for faster order tracking and better deliveries.
Similarly, Amazon's virtual assistant, Alexa, can converse in different languages; uses speakers and a camera to interact with the users. Amazon utilizes the audio commands from users to improve Alexa and deliver a better user experience.
5. Data Science in Supply Chain Management
Predictive analytics and big data are driving innovation in the Supply chain domain. They offer greater visibility into the company operations, reduce costs and overheads, forecasting demands, predictive maintenance, product pricing, minimize supply chain interruptions, route optimization, fleet management, drive better performance, and more.
Optimizing supply chain with big data analytics: UPS
UPS is a renowned package delivery and supply chain management company. With thousands of packages being delivered every day, on average, a UPS driver makes about 100 deliveries each business day. On-time and safe package delivery are crucial to UPS's success. Hence, UPS offers an optimized navigation tool ''ORION'' (On-Road Integrated Optimization and Navigation), which uses highly advanced big data processing algorithms. This tool for UPS drivers provides route optimization concerning fuel, distance, and time. UPS utilizes supply chain data analysis in all aspects of its shipping process. Data about packages and deliveries are captured through radars and sensors. The deliveries and routes are optimized using big data systems. Overall, this approach has helped UPS save 1.6 million gallons of gasoline in transportation every year, significantly reducing delivery costs.
6. Data Science in Meteorology
Weather prediction is an interesting application of data science. Businesses like aviation, agriculture and farming, construction, consumer goods, sporting events, and many more are dependent on climatic conditions. The success of these businesses is closely tied to the weather, as decisions are made after considering the weather predictions from the meteorological department.
Besides, weather forecasts are extremely helpful for individuals to manage their allergic conditions. One crucial application of weather forecasting is natural disaster prediction and risk management.
Weather forecasts begin with a large amount of data collection related to the current environmental conditions (wind speed, temperature, humidity, clouds captured at a specific location and time) using sensors on IoT (Internet of Things) devices and satellite imagery. This gathered data is then analyzed using the understanding of atmospheric processes, and machine learning models are built to make predictions on upcoming weather conditions like rainfall or snow prediction. Although data science cannot help avoid natural calamities like floods, hurricanes, or forest fires. Tracking these natural phenomena well ahead of their arrival is beneficial. Such predictions allow governments sufficient time to take necessary steps and measures to ensure the safety of the population.
IMD leveraged data science to achieve a record 1.2m evacuation before cyclone ''Fani''
Most data scientist’s responsibilities rely on satellite images to make short-term forecasts, decide whether a forecast is correct, and validate models. Machine Learning is also used for pattern matching in this case. It can forecast future weather conditions if it recognizes a past pattern. When employing dependable equipment, sensor data is helpful to produce local forecasts about actual weather models. IMD used satellite pictures to study the low-pressure zones forming off the Odisha coast (India). In April 2019, thirteen days before cyclone ''Fani'' reached the area, IMD (India Meteorological Department) warned that a massive storm was underway, and the authorities began preparing for safety measures.
It was one of the most powerful cyclones to strike India in the recent 20 years, and a record 1.2 million people were evacuated in less than 48 hours, thanks to the power of data science.
7. Data Science in the Entertainment Industry
Due to the Pandemic, demand for OTT (Over-the-top) media platforms has grown significantly. People prefer watching movies and web series or listening to the music of their choice at leisure in the convenience of their homes. This sudden growth in demand has given rise to stiff competition. Every platform now uses data analytics in different capacities to provide better-personalized recommendations to its subscribers and improve user experience.
How Netflix uses data science to personalize the content and improve recommendations
Netflix is an extremely popular internet television platform with streamable content offered in several languages and caters to various audiences. In 2006, when Netflix entered this media streaming market, they were interested in increasing the efficiency of their existing ''Cinematch'' platform by 10% and hence, offered a prize of $1 million to the winning team. This approach was successful as they found a solution developed by the BellKor team at the end of the competition that increased prediction accuracy by 10.06%. Over 200 work hours and an ensemble of 107 algorithms provided this result. These winning algorithms are now a part of the Netflix recommendation system.
Netflix also employs Ranking Algorithms to generate personalized recommendations of movies and TV Shows appealing to its users.
Spotify uses big data to deliver a rich user experience for online music streaming
Personalized online music streaming is another area where data science is being used. Spotify is a well-known on-demand music service provider launched in 2008, which effectively leveraged big data to create personalized experiences for each user. It is a huge platform with more than 24 million subscribers and hosts a database of nearly 20million songs; they use the big data to offer a rich experience to its users. Spotify uses this big data and various algorithms to train machine learning models to provide personalized content. Spotify offers a "Discover Weekly" feature that generates a personalized playlist of fresh unheard songs matching the user's taste every week. Using the Spotify "Wrapped" feature, users get an overview of their most favorite or frequently listened songs during the entire year in December. Spotify also leverages the data to run targeted ads to grow its business. Thus, Spotify utilizes the user data, which is big data and some external data, to deliver a high-quality user experience.
8. Data Science in Banking and Finance
Data science is extremely valuable in the Banking and Finance industry. Several high priority aspects of Banking and Finance like credit risk modeling (possibility of repayment of a loan), fraud detection (detection of malicious or irregularities in transactional patterns using machine learning), identifying customer lifetime value (prediction of bank performance based on existing and potential customers), customer segmentation (customer profiling based on behavior and characteristics for personalization of offers and services). Finally, data science is also used in real-time predictive analytics (computational techniques to predict future events).
How HDFC utilizes Big Data Analytics to increase revenues and enhance the banking experience
One of the major private banks in India, HDFC Bank, was an early adopter of AI. It started with Big Data analytics in 2004, intending to grow its revenue and understand its customers and markets better than its competitors. Back then, they were trendsetters by setting up an enterprise data warehouse in the bank to be able to track the differentiation to be given to customers based on their relationship value with HDFC Bank. Data science and analytics have been crucial in helping HDFC bank segregate its customers and offer customized personal or commercial banking services. The analytics engine and SaaS use have been assisting the HDFC bank in cross-selling relevant offers to its customers. Apart from the regular fraud prevention, it assists in keeping track of customer credit histories and has also been the reason for the speedy loan approvals offered by the bank.
9. Data Science in Urban Planning and Smart Cities
Data Science can help the dream of smart cities come true! Everything, from traffic flow to energy usage, can get optimized using data science techniques. You can use the data fetched from multiple sources to understand trends and plan urban living in a sorted manner.
The significant data science case study is traffic management in Pune city. The city controls and modifies its traffic signals dynamically, tracking the traffic flow. Real-time data gets fetched from the signals through cameras or sensors installed. Based on this information, they do the traffic management. With this proactive approach, the traffic and congestion situation in the city gets managed, and the traffic flow becomes sorted. A similar case study is from Bhubaneswar, where the municipality has platforms for the people to give suggestions and actively participate in decision-making. The government goes through all the inputs provided before making any decisions, making rules or arranging things that their residents actually need.
10. Data Science in Agricultural Prediction
Have you ever wondered how helpful it can be if you can predict your agricultural yield? That is exactly what data science is helping farmers with. They can get information about the number of crops they can produce in a given area based on different environmental factors and soil types. Using this information, the farmers can make informed decisions about their yield and benefit the buyers and themselves in multiple ways.
Source: nature.com
Farmers across the globe and overseas use various data science techniques to understand multiple aspects of their farms and crops. A famous example of data science in the agricultural industry is the work done by Farmers Edge. It is a company in Canada that takes real-time images of farms across the globe and combines them with related data. The farmers use this data to make decisions relevant to their yield and improve their produce. Similarly, farmers in countries like Ireland use satellite-based information to ditch traditional methods and multiply their yield strategically.
11. Data Science in the Transportation Industry
Transportation keeps the world moving around. People and goods commute from one place to another for various purposes, and it is fair to say that the world will come to a standstill without efficient transportation. That is why it is crucial to keep the transportation industry in the most smoothly working pattern, and data science helps a lot in this. In the realm of technological progress, various devices such as traffic sensors, monitoring display systems, mobility management devices, and numerous others have emerged.
Many cities have already adapted to the multi-modal transportation system. They use GPS trackers, geo-locations and CCTV cameras to monitor and manage their transportation system. Uber is the perfect case study to understand the use of data science in the transportation industry. They optimize their ride-sharing feature and track the delivery routes through data analysis. Their data science case studies approach enabled them to serve more than 100 million users, making transportation easy and convenient. Moreover, they also use the data they fetch from users daily to offer cost-effective and quickly available rides.
12. Data Science in the Environmental Industry
Increasing pollution, global warming, climate changes and other poor environmental impacts have forced the world to pay attention to environmental industry. Multiple initiatives are being taken across the globe to preserve the environment and make the world a better place. Though the industry recognition and the efforts are in the initial stages, the impact is significant, and the growth is fast.
The popular use of data science in the environmental industry is by NASA and other research organizations worldwide. NASA gets data related to the current climate conditions, and this data gets used to create remedial policies that can make a difference. Another way in which data science is actually helping researchers is they can predict natural disasters well before time and save or at least reduce the potential damage considerably. A similar case study is with the World Wildlife Fund. They use data science to track data related to deforestation and help reduce the illegal cutting of trees. Hence, it helps preserve the environment.
Where to Find Full Data Science Case Studies?
Data science is a highly evolving domain with many practical applications and a huge open community. Hence, the best way to keep updated with the latest trends in this domain is by reading case studies and technical articles. Usually, companies share their success stories of how data science helped them achieve their goals to showcase their potential and benefit the greater good. Such case studies are available online on the respective company websites and dedicated technology forums like Towards Data Science or Medium.
Additionally, we can get some practical examples in recently published research papers and textbooks in data science.
What Are the Skills Required for Data Scientists?
Data scientists play an important role in the data science process as they are the ones who work on the data end to end. To be able to work on a data science case study, there are several skills required for data scientists like a good grasp of the fundamentals of data science, deep knowledge of statistics, excellent programming skills in Python or R, exposure to data manipulation and data analysis, ability to generate creative and compelling data visualizations, good knowledge of big data, machine learning and deep learning concepts for model building & deployment. Apart from these technical skills, data scientists also need to be good storytellers and should have an analytical mind with strong communication skills.
Opt for the best business analyst training elevating your expertise. Take the leap towards becoming a distinguished business analysis professional
Conclusion
These were some interesting data science case studies across different industries. There are many more domains where data science has exciting applications, like in the Education domain, where data can be utilized to monitor student and instructor performance, develop an innovative curriculum that is in sync with the industry expectations, etc.
Almost all the companies looking to leverage the power of big data begin with a SWOT analysis to narrow down the problems they intend to solve with data science. Further, they need to assess their competitors to develop relevant data science tools and strategies to address the challenging issue. Thus, the utility of data science in several sectors is clearly visible, a lot is left to be explored, and more is yet to come. Nonetheless, data science will continue to boost the performance of organizations in this age of big data.
Dive into our popular Data Science online courses, designed to provide you with practical skills and expert knowledge to excel in data analysis, machine learning, and more.
Explore our Popular Data Science Online courses
Develop key Data Science skills, from data manipulation and visualization to machine learning and statistical analysis, and prepare yourself for a successful career in data-driven industries.
Top Data Science Skills to Learn to upskill
SL. No | Top Data Science Skills to Learn | |
1 |
Data Analysis Online Courses | Inferential Statistics Online Courses |
2 |
Hypothesis Testing Online Courses | Logistic Regression Online Courses |
3 |
Linear Regression Courses | Linear Algebra for Analysis Online Courses |
Explore our collection of popular Data Science articles, offering insights, tutorials, and the latest trends to help you stay informed and enhance your expertise in the field.
Read our popular Data Science Articles
Frequently Asked Questions (FAQs)
1. How do you solve a case study in data science?
A case study in data science requires a systematic and organized approach for solving the problem. Generally, four main steps are needed to tackle every data science case study:
- Defining the problem statement and strategy to solve it
- Gather and pre-process the data by making relevant assumptions
- Select tool and appropriate algorithms to build machine learning /deep learning models
- Make predictions, accept the solutions based on evaluation metrics, and improve the model if necessary.
2. Where can I get data for a case study?
Getting data for a case study starts with a reasonable understanding of the problem. This gives us clarity about what we expect the dataset to include. Finding relevant data for a case study requires some effort. Although it is possible to collect relevant data using traditional techniques like surveys and questionnaires, we can also find good quality data sets online on different platforms like Kaggle, UCI Machine Learning repository, Azure open data sets, Government open datasets, Google Public Datasets, Data World and so on.
3. What tasks does a data scientist need to perform while designing a case study?
Data science projects involve multiple steps to process the data and bring valuable insights. A data science project includes different steps - defining the problem statement, gathering relevant data required to solve the problem, data pre-processing, data exploration & data analysis, algorithm selection, model building, model prediction, model optimization, and communicating the results through dashboards and reports.