Top 15 Hadoop Interview Questions and Answers in 2024
Updated on Feb 25, 2025 | 8 min read | 9.4k views
Share:
For working professionals
For fresh graduates
More
Updated on Feb 25, 2025 | 8 min read | 9.4k views
Share:
With data analytics gaining momentum, there has been a surge in the demand of people good with handling Big Data. From data analysts to data scientists, Big Data is creating an array of job profiles today. The first and foremost thing you’re expected to be hands-on with is Hadoop.
No matter what job role/profile, you’ll probably be working on Hadoop in one way or the other. So, you can invariably expect the interviewers to shoot a few Hadoop questions your way.
For that and more, let us look at the top 15 Hadoop interview questions that can be expected in any interview you sit for.
1. What is Hadoop? What are the primary components Hadoop?
Hadoop is an infrastructure equipped with relevant tools and services required to process and store Big Data. To be precise, Hadoop is the ‘solution’ to all the Big Data challenges. Furthermore, the Hadoop framework also helps organizations to analyze Big Data and make better business decisions.
The primary components of Hadoop are:
2. What are the core concepts of the Hadoop framework?
Hadoop is fundamentally based on two core concepts. They are:
3. Name the most common input formats in Hadoop?
There are three common input formats in Hadoop:
4. What is YARN?
YARN is the abbreviation of Yet Another Resource Negotiator. It is Hadoop’s data processing framework that manages data resources and creates an environment for successful processing.
5. What is “Rack Awareness”?
“Rack Awareness” is an algorithm that NameNode uses to determine the pattern in which the data blocks and their replicas are stored within Hadoop cluster. This is achieved with the help of rack definitions that reduce the congestion between data nodes contained in the same rack.
6. What are Active and Passive NameNodes?
A high-availability Hadoop system usually contains two NameNodes – Active NameNode and Passive NameNode.
The NameNode that runs the Hadoop cluster is called the Active NameNode and the standby NameNode that stores the data of the Active NameNode is the Passive NameNode.
The purpose of having two NameNodes is that if the Active NameNode crashes, the Passive NameNode can take the lead. Thus, the NameNode is always running in the cluster, and the system never fails.
7. What are the different schedulers in the Hadoop framework?
There are three different schedulers in Hadoop framework:
8. What is Speculative Execution?
Often in Hadoop framework, some nodes may run slower than the rest. This tends to constrain the entire program. To overcome this, Hadoop first detects or ‘speculates’ when a task is running slower than usual, and then it launches an equivalent backup for that task. So, in the process, the master node executes both the tasks simultaneously and whichever is completed first is accepted while the other one is killed. This backup feature of Hadoop is known as Speculative Execution.
9. Name the main components of Apache HBase?
Apache HBase is comprised of three components:
10. What is “Checkpointing”? What is its benefit?
Checkpointing refers to the procedure by which a FsImage and Edit log are combined to form a new FsImage. Thus, instead of replaying the edit log, the NameNode can directly load the final in-memory state from the FsImage. The secondary NameNode is responsible for this process.
The benefit that Checkpointing offers is that it minimizes the startup time of the NameNode, thereby making the entire process more efficient.
Big Data Applications in Pop-Culture
11. How to debug a Hadoop code?
To debug a Hadoop code, first, you need to check the list of MapReduce tasks that are presently running. Then you need to check whether or not any orphaned tasks are running simultaneously. If so, you need to find the location of Resource Manager logs by following these simple steps:
Run “ps –ef | grep –I ResourceManager” and in the displayed result, try to find if there is an error related to a specific job id.
Now, identify the worker node that was used to execute the task. Log in to the node and run “ps –ef | grep –iNodeManager.”
Finally, scrutinize the Node Manager log. Most of the errors are generated from user level logs for each map-reduce job.
12. What is the purpose of RecordReader in Hadoop?
Hadoop breaks data into block formats. RecordReader helps integrate these data blocks into a single readable record. For example, if the input data is split into two blocks –
Row 1 – Welcome to
Row 2 – UpGrad
RecordReader will read this as “Welcome to UpGrad.”
13. What are the modes in which Hadoop can run?
The modes in which Hadoop can run are:
14. Name some practical applications of Hadoop.
Here are some real-life instances where Hadoop is making a difference :
15. What are the vital Hadoop tools that can enhance the performance of Big Data?
The Hadoop tools that boost Big Data performance significantly are
• Hive
• HDFS
• HBase
• SQL
• NoSQL
• Oozie
• Clouds
• Avro
• Flume
• ZooKeeper
These Hadoop interview questions should be of great help to you in your next interview. While it is sometimes the tendency of interviewers to twist some Hadoop interview questions, it should not be an issue for you if you have your basics sorted.
If you are interested to know more about Big Data, check out our Advanced Certificate Programme in Big Data from IIIT Bangalore.
Get Free Consultation
By submitting, I accept the T&C and
Privacy Policy
Start Your Career in Data Science Today
Top Resources