View All
View All
View All
View All
View All
View All
View All
View All
View All
View All
View All
View All
  • Home
  • Blog
  • General
  • Tower of Hanoi Algorithm: Definition, Use-cases & Advantages

Tower of Hanoi Algorithm: Definition, Use-cases & Advantages

By venkatesh Rajanala

Updated on Mar 07, 2025 | 12 min read | 5.8k views

Share:

Are you searching for the Tower of Hanoi problem’s solution in simpler way on the whole internet? Well, you came to the right place. In this blog, we will explore the elegant solutions to this timeless mathematical conundrum, Tower of Hanoi, by looking at it through the prism of recursion. Get yourself ready for an experience that blends the elegance of algorithmic reasoning with the difficulty of solving puzzles.  

The Tower of Hanoi puzzle, sometimes called the Hanoi Tower, has a straightforward structure of three rods and a pile of discs with different diameters. However, intricate patterns and ideas are hiding within this deceptively simple framework, just waiting to be discovered. We will take a look at the strength and grace of recursive thinking as we work through the puzzle’s limitations—moving discs one at a time, making sure larger discs never rest atop smaller ones, and pursuing the best possible solution.  

Read along as we further explore the potential of the Tower of Hanoi algorithm and set out on an exciting journey to expand our software development expertise.

Definition of Tower of Hanoi Problem 

In the Tower of Hanoi game, a well-known mathematical riddle, a stack of disks must be transferred from one rod to another while following strict guidelines. Usually, the puzzle is made up of three rods and several disks that are arranged on one rod in ascending size order at first. 

Our goal is to move the whole disk stack onto a different rod according to the guidelines listed below: 

Constraints and Rules of the Tower of Hanoi Puzzle: 

  • Three Rods: 
    • The puzzle involves three rods, typically denoted as A, B, and C. 
    • Initially, all disks are stacked on one rod, often called the source rod. 
  • Different-sized Disks: 
    • The disks are of different sizes. 
    • They are initially stacked in ascending order of size on the source rod. 
    • Larger disks must always be placed below smaller disks. 
  • Single Disk Movement: 
    • At any given time, only one disk can be moved from the top of one rod to the top of another rod. 
    • Movement involves removing the top disk from one rod and placing it on top of another rod. 
  • No Larger Disk on Smaller Disk: 
    • Placing a larger disk on top of a smaller disk is forbidden. 
    • This rule must be followed in every configuration of the puzzle. 
  • Recursive Nature: 
    • The Tower of Hanoi problem-solving approach relies on recursion. 
    • To move a tower of n disks from the source rod to the target rod: 
      • Recursively move the top n-1 disks from the source rod to the auxiliary rod. 
      • Move the nth disk from the source rod to the target rod. 
      • Recursively move the n-1 disks from the auxiliary rod to the target rod. 
  • Minimum Moves: 
    • The goal is to transfer the entire stack of disks from the source rod to a different rod using the fewest number of moves possible. 
    • The minimum number of moves required to solve the Tower of Hanoi puzzle with n disks is (2^n – 1). 

The Tower of Hanoi problem is well known for its simplicity and capacity to illustrate intricate mathematical ideas, such as mathematical induction and recursion. The Tower of Hanoi issue with (n) disks can be solved in the fewest possible movements, (2^n – 1), which makes it a great exercise in algorithmic thinking and problem-solving techniques. Although the Tower of Hanoi problem is frequently resolved by hand, computer scientists also use it as a standard for designing and optimizing algorithms. Due to its sophisticated design and mathematical qualities, this puzzle is a favorite among aficionados all over the world and is a mainstay of recreational mathematics. 

Understanding the Recursive Approach in Tower of Hanoi 

The Tower of Hanoi game can be solved effectively and elegantly by using the recursive strategy, which uses the principle of recursion to transfer the disks from the starting rod to the destination rod. 

But first, let’s talk about recursion for a while, and recursion is essentially the process of dissecting an issue into smaller, more manageable versions of the same problem until you get to a base case—the most straightforward version of the problem that can be solved immediately. 

The recursive algorithm for the Tower of Hanoi solution goes like this: 

  • Base Case: One disk can be moved straight from the starting rod to the destination rod if that is all that needs to be moved. 
  • Recursive Step: The recursive method requires three recursive calls for a stack of (n) disks: 
    • Using the destination rod as a temporary storage rod, move the top (n-1) disks from the beginning rod to the auxiliary rod. 
    • Transfer the biggest disk, known as the (n)th disk, from the initial rod to the final rod. 
    • Utilizing the starting rod as a temporary store, transfer the (n-1) disks from the auxiliary rod to the destination rod. 

The complete stack of disks can be transported from the starting rod to the destination rod while still staying within the bounds of the Tower of Hanoi issue by applying these steps recursively and repeatedly. 

The Tower of Hanoi problem is beautifully handled with minimal code complexity using this recursive approach because the problem is divided into smaller subproblems that are solved with the same algorithm. Furthermore, the algorithm demonstrates the strength and adaptability of recursion in algorithmic design by automatically handling larger instances of the problem by solving smaller examples recursively. 

Tower of Hanoi Algorithm

The Tower of Hanoi program is successfully divided into smaller sub-problems by the recursive algorithm, which solves each subproblem iteratively until it reaches the basic case of a single disk. The complete stack of disks can be transferred from the source rod to the destination rod while following the previously described procedures and following the puzzle’s guidelines and limitations. 

Here, I present you the pseudocode representation of the recursive Tower of Hanoi algorithm: 

This algorithm efficiently solves the Tower of Hanoi problem in (2^n – 1) moves, where n is the number of disks. It showcases the beauty and power of recursion in algorithmic design. 

Inputs: 

  • n: Number of disks 
  • source: Starting rod 
  • destination: Destination rod 
  • auxiliary: Auxiliary rod 

Base Case: 

  • If n equals 1: 
  • Move disk from source to destination. 

Recursive Step: 

  • Otherwise: 
    • Recursively move the top (n-1) disks from the source rod to the auxiliary rod, using the destination rod as temporary storage. 
    • Move the largest disk (the nth disk) from the source rod to the destination rod. 
    • Recursively move the (n-1) disks from the auxiliary rod to the destination rod, using the source rod as temporary storage. 

Application & use cases of the Tower of Hanoi Algorithm 

The Tower of Hanoi solution is a classic in computer science and recreational mathematics, demonstrating its adaptability and usefulness in a variety of contexts. Among the noteworthy use cases and applications are: 

  1. Computer Science: One of the most important examples of recursion in computer science teaching is the Tower of Hanoi algorithm. To assist students in understanding the idea of decomposing complicated issues into smaller, more manageable subproblems, it is frequently used to teach recursive algorithms and their implementation. 
  2. Algorithm Design: The Tower of Hanoi algorithm is a useful tool for comprehending and creating other recursive algorithms due to its recursive nature. It offers insights into the workings of recursion, including recursive calls and base cases, which are crucial elements of many algorithms. 
  3. Optimization Issues: The Tower of Hanoi algorithm illustrates methods for refining approaches to problem-solving. The puzzle can be solved with a minimum of (2^n – 1) moves, demonstrating the significance of efficiency and optimization in algorithmic design. 
  4. Structures: You can extend the Tower of Hanoi challenge to investigate data structure principles like stacks and queues. Putting these data structures to use in the algorithm’s implementation offers useful insights into their functionality and use. 
  5. Mathematical Modeling: There are similarities between the Tower of Hanoi issue and number theory and combinatorics, among other mathematical ideas. It is an important tool for mathematical exploration and analysis since it can be used as a model to study recursion, induction, and pattern recognition. 
  6. Robotics and Automation: Systems for robotics and automation can benefit from the same ideas that underpin the Tower of Hanoi algorithm, such as sequential movement and effective resource use. It may serve as an inspiration for the creation of algorithms for automated operations such as warehouse logistics and robotic arm manipulation. 

Additionally, for those who are looking to gain practical skills in software development, consider enrolling in the Full Stack Development Course offered by IIITB (International Institute of Information Technology, Bangalore). This intensive course covers both front-end and back-end development, providing students with a complete understanding of modern web development technologies and practices. 

Advantages and Disadvantages of the Tower of Hanoi algorithm 

Although the Tower of Hanoi algorithm has several drawbacks, it also has many benefits. Below is a summary of the advantages and disadvantages of using the Tower of Hanoi algorithm :

Advantages of the Tower of Hanoi algorithm:

  1. Elegance and Simplicity: The Tower of Hanoi algorithm is simple yet elegant, making it simple to comprehend and use. It is an excellent teaching tool since it provides a clear illustration of recursion and problem-solving methods. 
  2. Efficiency: The Tower of Hanoi algorithm solves the puzzle efficiently with (2^n – 1) moves, where (n) is the number of disks. It ensures the optimal solution, demonstrating its efficiency in determining the shortest path to the answer. 
  3. Adaptability: The algorithm was first created to solve the Tower of Hanoi challenge, but because of its recursive structure and understanding of problem decomposition, it may be used to address a variety of other issues as well. It provides a framework for comprehending and creating recursive algorithms in many different domains. 

Disadvantages of the Tower of Hanoi algorithm:

  1. Limited Applicability: Although the Tower of Hanoi method is flexible, it can only be directly applied to issues that are like the Tower of Hanoi puzzle. It might not be appropriate for handling difficult real-world issues that call for many approaches to problem-solving. 
  2. Space Complexity: Because the Tower of Hanoi technique is recursive, it might occasionally take a large amount of memory. High memory utilization might result from storing numerous recursive calls on the call stack, particularly for issues involving big input sizes. 
  3. Performance Overhead: Even if the Tower of Hanoi algorithm ensures the best answer, it might not necessarily be the fastest method in terms of execution time, particularly for issues where there are more effective alternative approaches. 

Conclusion

In conclusion, the Tower of Hanoi algorithm is an interesting journey through the maze of problem-solving, not just a confusing way from point A to point B! It’s full of interest and knowledge thanks to recursion and its simplicity. It surprises us with its perfectly flawless moves for resolving the Tower of Hanoi puzzle, but it also teases us with its constraints, reminding us that even the brightest stars have their unusual uniqueness. 

Now that we are done with the investigation of the Tower of Hanoi algorithm, you should know that your journey in software development and computer science has just begun. So, if you’re interested in expanding your skill set, you can explore upGrad’s Online Software Development Courses and more!

By enrolling yourself in these educational courses, you can dive deeper into understanding software development, computer science, and related fields, paving the way for a successful and fulfilling career in the world of technology.

Placement Assistance

Executive PG Program13 Months
background

O.P.Jindal Global University

MBA from O.P.Jindal Global University

Live Case Studies and Projects

Master's Degree12 Months

Frequently Asked Questions (FAQs)

1. How do you solve the Tower of Hanoi using recursion?

2. What is the recursive formula for the Tower of Hanoi?

3. Is the Tower of Hanoi iterative or recursive?

4. What is the algorithm for Tower of Hanoi?

5. What is the trick to solve the Tower of Hanoi?

6. What is the concept of the Tower of Hanoi?

7. What is the formula to solve Tower of Hanoi?

8. Where is Tower of Hanoi used in real life?

9. What is Tower of Hanoi used for?

10. What is the objective of the Tower of Hanoi puzzle?

11. What is the Tower of Hanoi in artificial intelligence?

venkatesh Rajanala

2 articles published

Get Free Consultation

+91

By submitting, I accept the T&C and
Privacy Policy

Top Resources

Recommended Programs

PMI® | upGrad KnowledgeHut

PMI® | upGrad KnowledgeHut

Project Management Professional (PMP)® Certification

Guaranteed Exam Pass Study Plan

Certification

36 Hrs Live Expert-Led Training

Scaled Agile Inc.® | upGrad KnowledgeHut

Scaled Agile Inc.® | upGrad KnowledgeHut

Implementing SAFe® 6.0 with SPC Certification

1-Year Access to SA Community

Certification

32 Hrs Live Expert-Led Training

PeopleCert® | upGrad KnowledgeHut

PeopleCert® | upGrad KnowledgeHut

PRINCE2® Foundation and Practitioner Certification

Simulations, Mock Tests and More

Certification

32 Hrs Live Expert-Led Training