- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Types of Artificial Intelligence Algorithms You Should Know [A Complete Guide]
Updated on 19 February, 2024
55.12K+ views
• 14 min read
Table of Contents
Artificial Intelligence has grown to have a significant impact on the world. With large amounts of data being generated by different applications and sources, machine learning systems can learn from the test data and perform intelligent tasks.
Artificial Intelligence is the field of computer science that deals with imparting decisive ability and thinking ability to machines. Artificial Intelligence is thus a blend of computer science, data analytics, and pure mathematics.
Machine learning has become an integral part of Artificial Intelligence, and it only deals with the first part, the process of learning from input data. Artificial Intelligence and its benefits have never ceased to amaze us.
The artificial intelligence market is expected to grow by leaps and bounds. The market is expected to grow at the rate of 39.4% by 2022-2028. The artificial intelligence allows the organisations to make better decisions and put better measures to increase the growth.
The artificial intelligence increases the accuracy and decision-making process of the company. It also helps in automation of tasks. Some of the examples of artificial intelligence would be self driving cars, visual assistants, face unlock, etc.
There are various types of artificial intelligence, such as reactive, limited memory, theory of mind, and self aware. The machine performs various AI algorithms in order to carry out the tasks. Algorithms are subsets of machine learning that automates the process of machine learning. It is these algorithms that tell the machine how to learn on its own.
There are algorithms artificial intelligence grouped into broadly three categories such as supervised learning, unsupervised learning and reinforcement learning.
Join the AI Courses online from the World’s top Universities – Masters, Executive Post Graduate Programs, and Advanced Certificate Program in ML & AI to fast-track your career.
What is an AI algorithm?
Before understanding what, an AI Algorithm is, it is necessary to understand what Artificial Intelligence is. It is concerned with not just understanding but also building intelligent entities, i.e., machines that can compute how to act effectively and safely in a wide variety of novel situations. Typically, the Turing test approach is used to build and evaluate these systems. Alan Turing, the great computer scientist, formulated a thought experiment in which a computer passes the test if a human interrogator, after posing some questions, cannot tell whether the responses came from a person or from a computer.
Accordingly, AI algorithms need the following capabilities to pass the Turing test:
- Natural Language Processing
- Knowledge Representation
- Automated Reasoning
- Machine Learning
- Computer Vision
- Robotics
In computer science, an algorithm is a finite set of instructions to solve a problem or perform a computation. AI algorithm(s) is the set of algorithms that realize intelligent machines that can perform the aforementioned tasks.
How Do AI Algorithms Work?
To understand how AI algorithms work, it is important to understand the concept of an agent. An agent can be viewed as perceiving its environment through sensors and acting upon that environment through actuators.
A software agent takes keystrokes, file contents, and network packets as sensory inputs and acts on the environment by displaying on the screen, writing files, and sending network packets.
AI algorithms are specialized software agents called rational agents. A rational agent is a computer program that acts in the best possible way to achieve its goals based on what it knows and what it sees. To understand how a rational agent works, we need to consider four factors:
- The performance measure that defines the criterion of success. This is how the agent evaluates how well it is doing and what it wants to achieve.
- The agent’s prior knowledge of the environment. This is what the agent knows about the world before it starts acting, such as the rules of the game, business domain knowledge, or the laws of physics.
- The actions that the agent can perform. This is what the agent can do to change the state of the world, such as moving, speaking, or buying.
- The agent’s percept sequence to date. The agent has observed this so far, such as the images, sounds, or data it receives from its sensors.
Based on these four factors, we can define a rational agent as follows:
A rational agent is a computer program that, for each possible percept sequence, selects an action that is expected to maximize its performance measure, given the evidence provided by the percept sequence and whatever built-in knowledge the agent has.
This means that a rational agent always chooses the best action according to its current situation and its goal. It does not act randomly or irrationally. It learns from its experience and adapts to changing circumstances.
Machine learning as a rational agent
Nevertheless, let’s see how this applies to Machine Learning, which is one of the types of Artificial Intelligence algorithms. A machine learning model or a learning agent can be defined as follows: It learns from experience E about some class of tasks T, and performance measures P if its performance in tasks in T, as measured by P, gets better with experience E. For example, a Supervised Learning Agent has these features:
- Task T: Predicting, Classifying, Forecasting, etc.
- Performance Measure P: Predictive Error, Accuracy, etc.
- Experience E: Historical, Labeled Data in a Database.
Types of Artificial Intelligence Algorithms
- Classification Algorithms
- Regression Algorithms
- Clustering Algorithms
Types of Artificial Intelligence Algorithms
Artificial intelligence algorithms can be broadly classified as :
1. Classification Algorithms
Classification algorithms are part of supervised learning. These algorithms are used to divide the subjected variable into different classes and then predict the class for a given input. For example, classification algorithms can be used to classify emails as spam or not. In the classification algorithms artificial intelligence classifies a new category of observations based on the existing data which we can call as training data as well. The program learns from the dataset that is already given. Let’s discuss some of the commonly used classification algorithms.
a) Naive Bayes
Naive Bayes algorithm works on Bayes theorem and takes a probabilistic approach, unlike other classification algorithms. The algorithm has a set of prior probabilities for each class. Once data is fed, the algorithm updates these probabilities to form something known as posterior probability. This comes useful when you need to predict whether the input belongs to a given list of classes or not.
This probabilistic classifier predicts on the basis of probability. The Naive Bayes algorithm that is a probabilistic classifier is used in sentiment analysis, recommendation, spam filtering, etc. It is called as Naive Bayes because it assumes class conditional independence. The attribute value of a given class is independent of the values of other existing attributes.
b) Decision Tree
The decision tree algorithm is more of a flowchart like an algorithm where nodes represent the test on an input attribute and branches represent the outcome of the test.
It is a very simple kind of a probabilistic tree that enables to make decisions about some kind of process. This tool assumes a tree like model and its possible consequences.
FYI: Free Deep Learning Course!
c) Random Forest
Random forest works like a group of trees. The input data set is subdivided and fed into different decision trees. The average of outputs from all decision trees is considered. Random forests offer a more accurate classifier as compared to Decision tree algorithm.
Existence of many decision trees is random forest algorithm in classification. In order to build uncorrelated forest trees it uses the features of bagging randomness while building individual trees. This allows the prediction to bemore accurate as compared to the individual tree.
Random forests is used in many industries such as healthcare, manufacturing, banking, retail, etc. One of the real-life applications of random forest would be to decide if an email is spam or not spam.
Best Machine Learning and AI Courses Online
d) Support Vector Machines
SVM is an algorithm that classifies data using a hyperplane, making sure that the distance between the hyperplane and support vectors is maximum.
It is a supervised learning algorithm that can be used for either classification and regression problems. One of the example of SVM is Face detection, classification of images, hand writing detection, text and hypertext categorization, etc.
e) K Nearest Neighbors
KNN algorithm uses a bunch of data points segregated into classes to predict the class of a new sample data point. It is called “lazy learning algorithm” as it is relatively short as compared to other algorithms.
Some of the applications of KNN is finance, medicine, such as bank customer profiling, credit rating, etc. There are various advantages to using KNN such as easy to implement and understand, also it is very simple and intuitive.
2. Regression Algorithms
Regression algorithm is another popular type of AI algorithm under supervised machine learning algorithms. Regression algorithms can predict the output values based on input data points fed in the learning system. The main application of regression algorithms includes predicting stock market price, predicting weather, etc. The regression algorithms also aids in predicting the output values based on the input features that are fed from the data. There are various types of regression such as linear regression, polynomial regression, etc. The most common algorithms under this section are
a) Linear regression
It is used to measure genuine qualities by considering the consistent variables. It is the simplest of all regression algorithms but can be implemented only in cases of linear relationship or a linearly separable problem. The algorithm draws a straight line between data points called the best-fit line or regression line and is used to predict new values.
One of the common examples of linear regression would be medical practice wherein the practioners understand the relationship between the sugar intake and high blood sugar levels.
Read: Linear Regression – ML Interview Questions & Answers
b) Lasso Regression
Lasso regression algorithm works by obtaining the subset of predictors that minimizes prediction error for a response variable. This is achieved by imposing a constraint on data points and allowing some of them to shrink to zero value.
The lasso regression is used to obtain the subset of predictors that helps in minimisng the error in prediction. Lasso puts a constraint on the model parameters that make the regression coefficients shrink to zero.
In-demand Machine Learning Skills
c) Logistic Regression
Logistic regression is mainly used for binary classification. This method allows you to analyze a set of variables and predict a categorical outcome. Its primary applications include predicting customer lifetime value, house values, etc.
There are multiple real-life applications of logistic regression such as banking. A credit card company can know if the transaction amount and credit score will lead to fraudulent transaction or not.
d) Multivariate Regression
This algorithm has to be used when there is more than one predictor variable. This algorithm is extensively used in retail sector product recommendation engines, where customers preferred products will depend on multiple factors like brand, quality, price, review etc.
The multivariate regression helps in finding the relationship between multiple variables. Also in finding the correlation between dependent and independent variables.
e) Multiple Regression Algorithm
Multiple Regression Algorithm uses a combination of linear regression and non-linear regression algorithms taking multiple explanatory variables as inputs. The main applications include social science research, insurance claim genuineness, behavioural analysis, etc.
3. Clustering Algorithms
Clustering is the process of segregating and organizing the data points into groups based on similarities within members of the group. This is part of unsupervised learning. The main aim is to group similar items. For example, it can arrange all transactions of fraudulent nature together based on some properties in the transaction. There are various advantages to using clustering algorithms. As they are simpler to implement, adaptable to new examples, scale to large data sets and more. Some of the example of clustering algorithms would be identifying fake news, marketing, spam filter, etc. Below are the most common clustering algorithms.
a) K-Means Clustering
It is the simplest unsupervised learning algorithm. The algorithm gathers similar data points together and then binds them together into a cluster. The clustering is done by calculating the centroid of the group of data points and then evaluating the distance of each data point from the centroid of the cluster. Based on the distance, the analyzed data point is then assigned to the closest cluster. ‘K’ in K-means stands for the number of clusters the data points are being grouped into.
There are various applications to K- means clustering from banking to cybersecurity, search engines, etc. It is an unsupervised learning because the points have no external classification to them.
K-means has various real-life applications such as sentiment analysis, spam detection, etc. It is used where the user has the unlabeled data. Unlabeled data is that type of data which does not have a category or groups.
b) Fuzzy C-means Algorithm
FCM algorithm works on probability. Each data point is considered to have a probability of belonging to another cluster. Data points don’t have an absolute membership over a particular cluster, and this is why the algorithm is called fuzzy.
Fuzzy C- Means is a clustering technique wherein the data set gets grouped into N clusters where each data point in the dataset belongs to every cluster in one way or the other.
c) Expectation-Maximisation (EM) Algorithm
It is based on Gaussian distribution we learned in statistics. Data is pictured into a Gaussian distribution model to solve the problem. After assigning a probability, a point sample is calculated based on expectation and maximization equations.
The Expectation-Maximisation (EM) algorithm is used in those places where there is a need to find a local maximum likelihood parameters of a statistical model. It is also used in the places wherein the equations cannot be solved directly.
d) Hierarchical Clustering Algorithm
These algorithms sort clusters hierarchical order after learning the data points and making similarity observations. It can be of two types
- Divisive clustering, for a top-down approach
- Agglomerative clustering, for a bottom-up approach
Popular AI and ML Blogs & Free Courses
Use Cases of AI Algorithms
AI algorithms can be categorized into discriminative AI and generative AI.
- Discriminative AI algorithms give accurate answers for decision-making. They use ML algorithms like Logistic regression, Support Vector machines, Neural networks, etc. Some examples are:
- Predictive maintenance: AI algorithms can detect machine failures before they happen and help organizations take preventive measures. This saves money and time.
- Spam Filtering: AI algorithms can sort emails into spam or non-spam and protect users from harmful messages.
- Generative AI algorithms create new content instead of giving exact answers. They use models like Generative Adversarial Networks, Variational Autoencoders, and Transformers like the GPT-n series. Some examples are:
- Content Generation: This is creating new text in different formats based on specific topics, rules, or limits. For instance, writing a script for a space adventure movie is a content-generation task.
- Content Editing: This is the improvement of existing text by checking and correcting its quality, meaning, and structure. It can involve fixing grammar, ensuring coherence, and rearranging for better flow. For instance, editing a rough draft of the Space Adventure script is a content editing task.
- Content Synthesis: This is the combination of information from various sources and contexts to create a clear and concise output. It requires both content generation and editing skills. It also aims to present the data in a new or original way. For instance, combining scripts from Ramayana and Mahabharata to create a new story for the millennial generation is a content synthesis task.
Let’s wind up and conclude
Let’s wind up and conclude
AI has startled the world multiple times and has a lot of applications in the real world to solve its complex problems. We hope this article has shed some light on the various types of artificial intelligence algorithms and their broad classifications. Algorithms are chosen based on the need and the nature of the data points we have.
Algorithms have their advantages and disadvantages in terms of accuracy, performance and processing time. These are just a few algorithms. If you are keen on learning more, check out upGrad & IIIT-B’s Executive PG Programme in Machine Learning & AI.
Frequently Asked Questions (FAQs)
1. What is naïve bayes?
The Bayes theorem is used in the Naive Bayes algorithm, which, unlike the other algorithms on this list, takes a probabilistic approach. This simply means that the method has a set of prior probabilities established for each of the classifications for your target, rather than leaping right into the data. The algorithm changes these prior probabilities to generate the posterior probability when you feed in the data. As a result, this can be incredibly beneficial in situations when you need to anticipate whether your input corresponds to one of n classes or none of them. This is doable using a probabilistic technique because the probabilities tossed for all n classes will be quite low.
2. What is a decision tree?
The Decision Tree is simply a flowchart-like tree structure in which each exterior node represents a trial on an attribute and each branch indicates the test's result. The expected labels are stored in the leaf nodes. We begin at the root of the tree and work our way to the leaf node by comparing attribute values. When dealing with high-dimensional data and with little time spent on data preparation, we employ this classifier. A word of caution, however: they are prone to overfitting and can vary dramatically even with little changes in the training data.
3. Which AI algorithm is best?
Some of the most commonly used AI algorithms are- Linear Regression Logistic Regression K-means Decision Tree KNN Algorithm.
4. What is A* algorithm in AI?
It is a set of instructions to solve logical and mathematical problems. It is a searching algorithm that aids in finding the shortest path between an intital and final point. It is easy to understand and easy to debug.
5. How do you train an AI algorithm?
The following can be used to train the machine learning model- Name the model Choose the data type (Images, CSV, Text) Data upload Category/ Labeling Begin training.
6. How many AI are there?
There are four types of AI such as- Reactive Limited Memory Theory of Mind Self- Aware.
7. What are AI techniques?
Techniques or procedures that allows the computers to work like a human and show human like intellectual capabilities are AI techniques. These techniques can be visual perception, speech recognition.
RELATED PROGRAMS