Explore Courses
Liverpool Business SchoolLiverpool Business SchoolMBA by Liverpool Business School
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA (Master of Business Administration)
  • 15 Months
Popular
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Business Administration (MBA)
  • 12 Months
New
Birla Institute of Management Technology Birla Institute of Management Technology Post Graduate Diploma in Management (BIMTECH)
  • 24 Months
Liverpool John Moores UniversityLiverpool John Moores UniversityMS in Data Science
  • 18 Months
Popular
IIIT BangaloreIIIT BangalorePost Graduate Programme in Data Science & AI (Executive)
  • 12 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
upGradupGradData Science Bootcamp with AI
  • 6 Months
New
University of MarylandIIIT BangalorePost Graduate Certificate in Data Science & AI (Executive)
  • 8-8.5 Months
upGradupGradData Science Bootcamp with AI
  • 6 months
Popular
upGrad KnowledgeHutupGrad KnowledgeHutData Engineer Bootcamp
  • Self-Paced
upGradupGradCertificate Course in Business Analytics & Consulting in association with PwC India
  • 06 Months
OP Jindal Global UniversityOP Jindal Global UniversityMaster of Design in User Experience Design
  • 12 Months
Popular
WoolfWoolfMaster of Science in Computer Science
  • 18 Months
New
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Rushford, GenevaRushford Business SchoolDBA Doctorate in Technology (Computer Science)
  • 36 Months
IIIT BangaloreIIIT BangaloreCloud Computing and DevOps Program (Executive)
  • 8 Months
New
upGrad KnowledgeHutupGrad KnowledgeHutAWS Solutions Architect Certification
  • 32 Hours
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Popular
upGradupGradUI/UX Bootcamp
  • 3 Months
upGradupGradCloud Computing Bootcamp
  • 7.5 Months
Golden Gate University Golden Gate University Doctor of Business Administration in Digital Leadership
  • 36 Months
New
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Golden Gate University Golden Gate University Doctor of Business Administration (DBA)
  • 36 Months
Bestseller
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDoctorate of Business Administration (DBA)
  • 36 Months
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (DBA)
  • 36 Months
KnowledgeHut upGradKnowledgeHut upGradSAFe® 6.0 Certified ScrumMaster (SSM) Training
  • Self-Paced
KnowledgeHut upGradKnowledgeHut upGradPMP® certification
  • Self-Paced
IIM KozhikodeIIM KozhikodeProfessional Certification in HR Management and Analytics
  • 6 Months
Bestseller
Duke CEDuke CEPost Graduate Certificate in Product Management
  • 4-8 Months
Bestseller
upGrad KnowledgeHutupGrad KnowledgeHutLeading SAFe® 6.0 Certification
  • 16 Hours
Popular
upGrad KnowledgeHutupGrad KnowledgeHutCertified ScrumMaster®(CSM) Training
  • 16 Hours
Bestseller
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 4 Months
upGrad KnowledgeHutupGrad KnowledgeHutSAFe® 6.0 POPM Certification
  • 16 Hours
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Science in Artificial Intelligence and Data Science
  • 12 Months
Bestseller
Liverpool John Moores University Liverpool John Moores University MS in Machine Learning & AI
  • 18 Months
Popular
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
IIIT BangaloreIIIT BangaloreExecutive Post Graduate Programme in Machine Learning & AI
  • 13 Months
Bestseller
IIITBIIITBExecutive Program in Generative AI for Leaders
  • 4 Months
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
IIIT BangaloreIIIT BangalorePost Graduate Certificate in Machine Learning & Deep Learning (Executive)
  • 8 Months
Bestseller
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Liverpool Business SchoolLiverpool Business SchoolMBA with Marketing Concentration
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA with Marketing Concentration
  • 15 Months
Popular
MICAMICAAdvanced Certificate in Digital Marketing and Communication
  • 6 Months
Bestseller
MICAMICAAdvanced Certificate in Brand Communication Management
  • 5 Months
Popular
upGradupGradDigital Marketing Accelerator Program
  • 05 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Corporate & Financial Law
  • 12 Months
Bestseller
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in AI and Emerging Technologies (Blended Learning Program)
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Intellectual Property & Technology Law
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Dispute Resolution
  • 12 Months
upGradupGradContract Law Certificate Program
  • Self paced
New
ESGCI, ParisESGCI, ParisDoctorate of Business Administration (DBA) from ESGCI, Paris
  • 36 Months
Golden Gate University Golden Gate University Doctor of Business Administration From Golden Gate University, San Francisco
  • 36 Months
Rushford Business SchoolRushford Business SchoolDoctor of Business Administration from Rushford Business School, Switzerland)
  • 36 Months
Edgewood CollegeEdgewood CollegeDoctorate of Business Administration from Edgewood College
  • 24 Months
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with Concentration in Generative AI
  • 36 Months
Golden Gate University Golden Gate University DBA in Digital Leadership from Golden Gate University, San Francisco
  • 36 Months
Liverpool Business SchoolLiverpool Business SchoolMBA by Liverpool Business School
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA (Master of Business Administration)
  • 15 Months
Popular
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Business Administration (MBA)
  • 12 Months
New
Deakin Business School and Institute of Management Technology, GhaziabadDeakin Business School and IMT, GhaziabadMBA (Master of Business Administration)
  • 12 Months
Liverpool John Moores UniversityLiverpool John Moores UniversityMS in Data Science
  • 18 Months
Bestseller
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Science in Artificial Intelligence and Data Science
  • 12 Months
Bestseller
IIIT BangaloreIIIT BangalorePost Graduate Programme in Data Science (Executive)
  • 12 Months
Bestseller
O.P.Jindal Global UniversityO.P.Jindal Global UniversityO.P.Jindal Global University
  • 12 Months
WoolfWoolfMaster of Science in Computer Science
  • 18 Months
New
Liverpool John Moores University Liverpool John Moores University MS in Machine Learning & AI
  • 18 Months
Popular
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (AI/ML)
  • 36 Months
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDBA Specialisation in AI & ML
  • 36 Months
Golden Gate University Golden Gate University Doctor of Business Administration (DBA)
  • 36 Months
Bestseller
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDoctorate of Business Administration (DBA)
  • 36 Months
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (DBA)
  • 36 Months
Liverpool Business SchoolLiverpool Business SchoolMBA with Marketing Concentration
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA with Marketing Concentration
  • 15 Months
Popular
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Corporate & Financial Law
  • 12 Months
Bestseller
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Intellectual Property & Technology Law
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Dispute Resolution
  • 12 Months
IIITBIIITBExecutive Program in Generative AI for Leaders
  • 4 Months
New
IIIT BangaloreIIIT BangaloreExecutive Post Graduate Programme in Machine Learning & AI
  • 13 Months
Bestseller
upGradupGradData Science Bootcamp with AI
  • 6 Months
New
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
KnowledgeHut upGradKnowledgeHut upGradSAFe® 6.0 Certified ScrumMaster (SSM) Training
  • Self-Paced
upGrad KnowledgeHutupGrad KnowledgeHutCertified ScrumMaster®(CSM) Training
  • 16 Hours
upGrad KnowledgeHutupGrad KnowledgeHutLeading SAFe® 6.0 Certification
  • 16 Hours
KnowledgeHut upGradKnowledgeHut upGradPMP® certification
  • Self-Paced
upGrad KnowledgeHutupGrad KnowledgeHutAWS Solutions Architect Certification
  • 32 Hours
upGrad KnowledgeHutupGrad KnowledgeHutAzure Administrator Certification (AZ-104)
  • 24 Hours
KnowledgeHut upGradKnowledgeHut upGradAWS Cloud Practioner Essentials Certification
  • 1 Week
KnowledgeHut upGradKnowledgeHut upGradAzure Data Engineering Training (DP-203)
  • 1 Week
MICAMICAAdvanced Certificate in Digital Marketing and Communication
  • 6 Months
Bestseller
MICAMICAAdvanced Certificate in Brand Communication Management
  • 5 Months
Popular
IIM KozhikodeIIM KozhikodeProfessional Certification in HR Management and Analytics
  • 6 Months
Bestseller
Duke CEDuke CEPost Graduate Certificate in Product Management
  • 4-8 Months
Bestseller
Loyola Institute of Business Administration (LIBA)Loyola Institute of Business Administration (LIBA)Executive PG Programme in Human Resource Management
  • 11 Months
Popular
Goa Institute of ManagementGoa Institute of ManagementExecutive PG Program in Healthcare Management
  • 11 Months
IMT GhaziabadIMT GhaziabadAdvanced General Management Program
  • 11 Months
Golden Gate UniversityGolden Gate UniversityProfessional Certificate in Global Business Management
  • 6-8 Months
upGradupGradContract Law Certificate Program
  • Self paced
New
IU, GermanyIU, GermanyMaster of Business Administration (90 ECTS)
  • 18 Months
Bestseller
IU, GermanyIU, GermanyMaster in International Management (120 ECTS)
  • 24 Months
Popular
IU, GermanyIU, GermanyB.Sc. Computer Science (180 ECTS)
  • 36 Months
Clark UniversityClark UniversityMaster of Business Administration
  • 23 Months
New
Golden Gate UniversityGolden Gate UniversityMaster of Business Administration
  • 20 Months
Clark University, USClark University, USMS in Project Management
  • 20 Months
New
Edgewood CollegeEdgewood CollegeMaster of Business Administration
  • 23 Months
The American Business SchoolThe American Business SchoolMBA with specialization
  • 23 Months
New
Aivancity ParisAivancity ParisMSc Artificial Intelligence Engineering
  • 24 Months
Aivancity ParisAivancity ParisMSc Data Engineering
  • 24 Months
The American Business SchoolThe American Business SchoolMBA with specialization
  • 23 Months
New
Aivancity ParisAivancity ParisMSc Artificial Intelligence Engineering
  • 24 Months
Aivancity ParisAivancity ParisMSc Data Engineering
  • 24 Months
upGradupGradData Science Bootcamp with AI
  • 6 Months
Popular
upGrad KnowledgeHutupGrad KnowledgeHutData Engineer Bootcamp
  • Self-Paced
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Bestseller
KnowledgeHut upGradKnowledgeHut upGradBackend Development Bootcamp
  • Self-Paced
upGradupGradUI/UX Bootcamp
  • 3 Months
upGradupGradCloud Computing Bootcamp
  • 7.5 Months
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 5 Months
upGrad KnowledgeHutupGrad KnowledgeHutSAFe® 6.0 POPM Certification
  • 16 Hours
upGradupGradDigital Marketing Accelerator Program
  • 05 Months
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
upGradupGradData Science Bootcamp with AI
  • 6 Months
Popular
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Bestseller
upGradupGradUI/UX Bootcamp
  • 3 Months
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 4 Months
upGradupGradCertificate Course in Business Analytics & Consulting in association with PwC India
  • 06 Months
upGradupGradDigital Marketing Accelerator Program
  • 05 Months

Types of Artificial Intelligence Algorithms You Should Know [A Complete Guide]

Updated on 19 February, 2024

55.12K+ views
14 min read

Artificial Intelligence has grown to have a significant impact on the world. With large amounts of data being generated by different applications and sources, machine learning systems can learn from the test data and perform intelligent tasks. 

Artificial Intelligence is the field of computer science that deals with imparting decisive ability and thinking ability to machines. Artificial Intelligence is thus a blend of computer science, data analytics, and pure mathematics.

Machine learning has become an integral part of Artificial Intelligence, and it only deals with the first part, the process of learning from input data. Artificial Intelligence and its benefits have never ceased to amaze us.

The artificial intelligence market is expected to grow by leaps and bounds. The market is expected to grow at the rate of 39.4% by 2022-2028. The artificial intelligence allows the organisations to make better decisions and put better measures to increase the growth.

The artificial intelligence increases the accuracy and decision-making process of the company. It also helps in automation of tasks. Some of the examples of artificial intelligence would be self driving cars, visual assistants, face unlock, etc.

There are various types of artificial intelligence, such as reactive, limited memory, theory of mind, and self aware. The machine performs various AI  algorithms in order to carry out the tasks. Algorithms are subsets of machine learning that automates the process of machine learning. It is these algorithms that tell the machine how to learn on its own.

There are algorithms artificial intelligence grouped into broadly three categories such as supervised learning, unsupervised learning and reinforcement learning.

Join the AI Courses online from the World’s top Universities – Masters, Executive Post Graduate Programs, and Advanced Certificate Program in ML & AI to fast-track your career.

What is an AI algorithm?

Before understanding what, an AI Algorithm is, it is necessary to understand what Artificial Intelligence is. It is concerned with not just understanding but also building intelligent entities, i.e., machines that can compute how to act effectively and safely in a wide variety of novel situations. Typically, the Turing test approach is used to build and evaluate these systems. Alan Turing, the great computer scientist, formulated a thought experiment in which a computer passes the test if a human interrogator, after posing some questions, cannot tell whether the responses came from a person or from a computer. 

Accordingly, AI algorithms need the following capabilities to pass the Turing test: 

  • Natural Language Processing 
  • Knowledge Representation 
  • Automated Reasoning 
  • Machine Learning 
  • Computer Vision 
  • Robotics 

In computer science, an algorithm is a finite set of instructions to solve a problem or perform a computation. AI algorithm(s) is the set of algorithms that realize intelligent machines that can perform the aforementioned tasks. 

How Do AI Algorithms Work?

To understand how AI algorithms work, it is important to understand the concept of an agent.  An agent can be viewed as perceiving its environment through sensors and acting upon that environment through actuators.   

A software agent takes keystrokes, file contents, and network packets as sensory inputs and acts on the environment by displaying on the screen, writing files, and sending network packets.  

AI algorithms are specialized software agents called rational agents. A rational agent is a computer program that acts in the best possible way to achieve its goals based on what it knows and what it sees. To understand how a rational agent works, we need to consider four factors: 

  • The performance measure that defines the criterion of success. This is how the agent evaluates how well it is doing and what it wants to achieve. 
  • The agent’s prior knowledge of the environment. This is what the agent knows about the world before it starts acting, such as the rules of the game, business domain knowledge, or the laws of physics. 
  • The actions that the agent can perform. This is what the agent can do to change the state of the world, such as moving, speaking, or buying. 
  • The agent’s percept sequence to date. The agent has observed this so far, such as the images, sounds, or data it receives from its sensors. 

Based on these four factors, we can define a rational agent as follows: 

A rational agent is a computer program that, for each possible percept sequence, selects an action that is expected to maximize its performance measure, given the evidence provided by the percept sequence and whatever built-in knowledge the agent has. 

This means that a rational agent always chooses the best action according to its current situation and its goal. It does not act randomly or irrationally. It learns from its experience and adapts to changing circumstances.  

Machine learning as a rational agent 

Nevertheless, let’s see how this applies to Machine Learning, which is one of the types of Artificial Intelligence algorithms. A machine learning model or a learning agent can be defined as follows: It learns from experience E about some class of tasks T, and performance measures P if its performance in tasks in T, as measured by P, gets better with experience E. For example, a Supervised Learning Agent has these features: 

  • Task T: Predicting, Classifying, Forecasting, etc. 
  • Performance Measure P: Predictive Error, Accuracy, etc. 
  • Experience E: Historical, Labeled Data in a Database. 

Types of Artificial Intelligence Algorithms 

  • Classification Algorithms 
  • Regression Algorithms 
  • Clustering Algorithms 

Types of Artificial Intelligence Algorithms

Artificial intelligence algorithms can be broadly classified as :

1. Classification Algorithms

Classification algorithms are part of supervised learning. These algorithms are used to divide the subjected variable into different classes and then predict the class for a given input. For example, classification algorithms can be used to classify emails as spam or not.  In the classification algorithms artificial intelligence classifies a new category  of observations based on the existing data which we can call as training data as well.  The program learns from the dataset that is already given. Let’s discuss some of the commonly used classification algorithms.

    a) Naive Bayes

Naive Bayes algorithm works on Bayes theorem and takes a probabilistic approach, unlike other classification algorithms. The algorithm has a set of prior probabilities for each class. Once data is fed, the algorithm updates these probabilities to form something known as posterior probability. This comes useful when you need to predict whether the input belongs to a given list of classes or not.

This probabilistic classifier predicts on the basis of probability. The Naive Bayes algorithm that is a probabilistic classifier is used in sentiment analysis, recommendation, spam filtering, etc. It is called as Naive Bayes because it assumes class conditional independence. The attribute value of a given class is independent of the values of other existing attributes.

    b) Decision Tree

The decision tree algorithm is more of a flowchart like an algorithm where nodes represent the test on an input attribute and branches represent the outcome of the test.

It is a very simple kind of a probabilistic tree that enables to make decisions about some kind of process. This tool assumes a tree like model and its possible consequences.

FYI: Free Deep Learning Course!

    c) Random Forest

Random forest works like a group of trees. The input data set is subdivided and fed into different decision trees. The average of outputs from all decision trees is considered. Random forests offer a more accurate classifier as compared to Decision tree algorithm.

Existence of many decision trees is random forest algorithm in classification. In order to build uncorrelated forest trees it uses the features of bagging randomness  while building individual trees. This allows the prediction to bemore accurate as compared to the individual tree.

Random forests is used in many industries such as healthcare, manufacturing, banking, retail, etc. One of the real-life applications of random forest would be to decide if an email is spam or not spam.

   d) Support Vector Machines

SVM is an algorithm that classifies data using a hyperplane, making sure that the distance between the hyperplane and support vectors is maximum.

It is a supervised learning algorithm that can be used for either classification and regression problems. One of the example of SVM is Face detection, classification of images, hand writing detection, text and hypertext categorization, etc.

    e) K Nearest Neighbors

KNN algorithm uses a bunch of data points segregated into classes to predict the class of a new sample data point. It is called “lazy learning algorithm” as it is relatively short as compared to other algorithms.

Some of the applications of KNN  is finance, medicine, such as bank customer profiling, credit rating, etc. There are various advantages to using KNN such as easy to implement and understand, also it is very simple and intuitive.

2. Regression Algorithms

Regression algorithm is another popular type of AI algorithm under supervised machine learning algorithms. Regression algorithms can predict the output values based on input data points fed in the learning system. The main application of regression algorithms includes predicting stock market price, predicting weather, etc. The regression algorithms also aids in predicting the output values based on the input features that are fed from the data. There are various types  of regression such as linear regression, polynomial regression, etc. The most common algorithms under this section are 

    a) Linear regression

It is used to measure genuine qualities by considering the consistent variables. It is the simplest of all regression algorithms but can be implemented only in cases of linear relationship or a linearly separable problem. The algorithm draws a straight line between data points called the best-fit line or regression line and is used to predict new values.

One of the common examples of linear regression would be medical practice wherein the practioners understand the relationship between the sugar intake and high blood sugar levels.

Read: Linear Regression – ML Interview Questions & Answers

    b) Lasso Regression

Lasso regression algorithm works by obtaining the subset of predictors that minimizes prediction error for a response variable. This is achieved by imposing a constraint on data points and allowing some of them to shrink to zero value.

The lasso regression is used to obtain the subset of predictors that helps in minimisng the error in prediction. Lasso puts a constraint on the model parameters  that make the regression coefficients shrink to zero.

    c) Logistic Regression

Logistic regression is mainly used for binary classification. This method allows you to analyze a set of variables and predict a categorical outcome. Its primary applications include predicting customer lifetime value, house values, etc.

There are multiple real-life applications of logistic regression such as banking. A credit card company can know if the transaction amount and credit score will lead to fraudulent transaction or not.

    d) Multivariate Regression

This algorithm has to be used when there is more than one predictor variable. This algorithm is extensively used in retail sector product recommendation engines, where customers preferred products will depend on multiple factors like brand, quality, price, review etc.

The multivariate regression helps in finding the relationship between multiple variables. Also in finding the correlation between dependent and independent variables.

    e) Multiple Regression Algorithm

Multiple Regression Algorithm uses a combination of linear regression and non-linear regression algorithms taking multiple explanatory variables as inputs. The main applications include social science research, insurance claim genuineness, behavioural analysis, etc. 

3. Clustering Algorithms

Clustering is the process of segregating and organizing the data points into groups based on similarities within members of the group. This is part of unsupervised learning. The main aim is to group similar items. For example, it can arrange all transactions of fraudulent nature together based on some properties in the transaction. There are various advantages to using clustering algorithms. As they are simpler to implement, adaptable to new examples, scale to large data sets and more. Some of the example of clustering algorithms would be identifying fake news, marketing,  spam filter, etc. Below are the most common clustering algorithms.

    a) K-Means Clustering

It is the simplest unsupervised learning algorithm. The algorithm gathers similar data points together and then binds them together into a cluster. The clustering is done by calculating the centroid of the group of data points and then evaluating the distance of each data point from the centroid of the cluster. Based on the distance, the analyzed data point is then assigned to the closest cluster. ‘K’ in K-means stands for the number of clusters the data points are being grouped into. 

There are various applications to K- means clustering from banking to cybersecurity, search engines, etc. It is an unsupervised learning because the points have no external classification to them. 

K-means has various real-life applications such as sentiment analysis, spam detection, etc. It is used where the user has the unlabeled data. Unlabeled data is that type of data which does not have a category or groups.  

    b) Fuzzy C-means Algorithm

FCM algorithm works on probability. Each data point is considered to have a probability of belonging to another cluster. Data points don’t have an absolute membership over a particular cluster, and this is why the algorithm is called fuzzy. 

Fuzzy C- Means is a clustering technique wherein the data set gets grouped into N clusters where each data point in the dataset belongs to every cluster in one way or the other.

    c) Expectation-Maximisation (EM) Algorithm

It is based on Gaussian distribution we learned in statistics. Data is pictured into a Gaussian distribution model to solve the problem. After assigning a probability, a point sample is calculated based on expectation and maximization equations. 

The Expectation-Maximisation (EM) algorithm is used in those places where there is a need to find a local maximum likelihood parameters of a statistical model. It is also used in the places wherein the equations cannot be solved directly.

    d) Hierarchical Clustering Algorithm

These algorithms sort clusters hierarchical order after learning the data points and making similarity observations. It can be of two types

  • Divisive clustering, for a top-down approach
  • Agglomerative clustering, for a bottom-up approach

Use Cases of AI Algorithms

AI algorithms can be categorized into discriminative AI and generative AI. 

  • Discriminative AI algorithms give accurate answers for decision-making. They use ML algorithms like Logistic regression, Support Vector machines, Neural networks, etc. Some examples are: 
    • Predictive maintenance: AI algorithms can detect machine failures before they happen and help organizations take preventive measures. This saves money and time. 
    • Spam Filtering: AI algorithms can sort emails into spam or non-spam and protect users from harmful messages. 
  • Generative AI algorithms create new content instead of giving exact answers. They use models like Generative Adversarial Networks, Variational Autoencoders, and Transformers like the GPT-n series. Some examples are: 
    • Content Generation: This is creating new text in different formats based on specific topics, rules, or limits. For instance, writing a script for a space adventure movie is a content-generation task. 
    • Content Editing: This is the improvement of existing text by checking and correcting its quality, meaning, and structure. It can involve fixing grammar, ensuring coherence, and rearranging for better flow. For instance, editing a rough draft of the Space Adventure script is a content editing task. 
    • Content Synthesis: This is the combination of information from various sources and contexts to create a clear and concise output. It requires both content generation and editing skills. It also aims to present the data in a new or original way. For instance, combining scripts from Ramayana and Mahabharata to create a new story for the millennial generation is a content synthesis task.

Let’s wind up and conclude 

Let’s wind up and conclude

AI has startled the world multiple times and has a lot of applications in the real world to solve its complex problems. We hope this article has shed some light on the various types of artificial intelligence algorithms and their broad classifications. Algorithms are chosen based on the need and the nature of the data points we have.

Algorithms have their advantages and disadvantages in terms of accuracy, performance and processing time. These are just a few algorithms. If you are keen on learning more, check out upGrad & IIIT-B’s Executive PG Programme in Machine Learning & AI.

Frequently Asked Questions (FAQs)

1. What is naïve bayes?

The Bayes theorem is used in the Naive Bayes algorithm, which, unlike the other algorithms on this list, takes a probabilistic approach. This simply means that the method has a set of prior probabilities established for each of the classifications for your target, rather than leaping right into the data. The algorithm changes these prior probabilities to generate the posterior probability when you feed in the data. As a result, this can be incredibly beneficial in situations when you need to anticipate whether your input corresponds to one of n classes or none of them. This is doable using a probabilistic technique because the probabilities tossed for all n classes will be quite low.

2. What is a decision tree?

The Decision Tree is simply a flowchart-like tree structure in which each exterior node represents a trial on an attribute and each branch indicates the test's result. The expected labels are stored in the leaf nodes. We begin at the root of the tree and work our way to the leaf node by comparing attribute values. When dealing with high-dimensional data and with little time spent on data preparation, we employ this classifier. A word of caution, however: they are prone to overfitting and can vary dramatically even with little changes in the training data.

3. Which AI algorithm is best?

Some of the most commonly used AI algorithms are- Linear Regression Logistic Regression K-means Decision Tree KNN Algorithm.

4. What is A* algorithm in AI?

It is a set of instructions to solve logical and mathematical problems. It is a searching algorithm that aids in finding the shortest path between an intital and final point. It is easy to understand and easy to debug.

5. How do you train an AI algorithm?

The following can be used to train the machine learning model- Name the model Choose the data type (Images, CSV, Text) Data upload Category/ Labeling Begin training.

6. How many AI are there?

There are four types of AI such as- Reactive Limited Memory Theory of Mind Self- Aware.

7. What are AI techniques?

Techniques or procedures that allows the computers to work like a human and show human like intellectual capabilities are AI techniques. These techniques can be visual perception, speech recognition.



SUGGESTED BLOGS

Technology will surely kill some jobs, but not all of them

898.89K+

Technology will surely kill some jobs, but not all of them

“Remember that dystopian view of the future in which technology displaces millions of people from their jobs? It’s happening” Jeff Weiner, CEO LinkedIn, wrote when Microsoft announced it was acquiring LinkedIn. Some of the top companies in the world such as handset maker Foxconn, US-based retail company Walmart and McDonald’s are now turning to robots and automation. It’s true that some jobs may become defunct as this shift becomes more pronounced. At the same time, these technologies doubtless offer lots of opportunities for many other types of jobs such as digital curation and preservation, data mining and big data analytics. Top Machine Learning and AI Courses Online Master of Science in Machine Learning & AI from LJMU Executive Post Graduate Programme in Machine Learning & AI from IIITB Advanced Certificate Programme in Machine Learning & NLP from IIITB Advanced Certificate Programme in Machine Learning & Deep Learning from IIITB Executive Post Graduate Program in Data Science & Machine Learning from University of Maryland To Explore all our certification courses on AI & ML, kindly visit our page below. Machine Learning Certification The shift of skills in jobs Most industries in India and around the world are undergoing a digital transformation, and skills to utilise emerging technologies like mobility, cloud computing, business intelligence, artificial intelligence, machine learning, robotics and nanotechnology among others are gaining popularity. In fact, the World Economic Forum estimates that (pdf) 65% of children entering school today will ultimately end up working in jobs that don’t yet exist. For example, demand for data analysts — a relatively new occupation — increased by almost 90% by the end of 2014 within a year. Many big e-commerce players, credit firms, airlines, hospitality, BFSI and retail industries already use analytics in a major way. In India, the analytics and business intelligence industry together is sized around 10 billion and is expected to grow by 22% to 26.9 billion by 2017. Skill deprivation: Education alone won’t guarantee a job! Human cognition will be in demand in the automation age When we speak of manual work being supplanted by technology, we must keep in mind that routine jobs are most susceptible to being replaced by automation. And while non-cognitive and routine work is decreasing, knowledge-oriented work is increasing. The demand for labour adept at managing such technology is on the rise – a trend that is likely to intensify as our processes become more technologically complex and disruptive. Humans are discovering newer ways of enhancing their productivity and efficiency. Most of the pattern-driven work is slowly getting automated as technology presents new ways to speed it up. But this doesn’t mean humans will be useless. They will be the ones who will need to identify problems and ask the right questions. Trending Machine Learning Skills AI Courses Tableau Certification Natural Language Processing Deep Learning AI Enrol for the Machine Learning Course from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career. Demand for newer jobs will remain History shows us that jobs have consistently been rendered obsolete with the advent of technology and machines. When the washing machine was invented, those who professionally hand-washed clothes faced large-scale unemployment and redundancy. People had to learn a more complex skill in a similar area or enter a new profession altogether. Similarly, drivers may be out of jobs if driverless cars become a norm in the future but other jobs that require manufacturing, programming and sale of such cars will have high demand. This is the way old jobs metamorphose into new ones and the economy learns to keep up. There’ll Be A Billion-Plus Job-Seekers By 2050! India ripe for tech driven roles The world is set for a technology boom with information technology jobs expected to grow by 22% through 2020 — and India is one of the leaders of the troupe. To capitalise, young job-seekers have to train themselves and take charge of technology-driven roles such as product managers, application developers, data analysts and digital marketers among others. And the rising number of startups in India, especially in the online space, provides a fertile ground. In fact, software startups in India are going to create 80,000 jobs by the following year itself. So jobs that seem to be at risk, may be like molecules – splitting further and creating more jobs – just of a different kind. Instead of worrying about unemployment, those entering the workforce need to keep one finger on the pulse of evolving technology, and invest in training themselves to acquire new skill sets. Popular AI and ML Blogs & Free Courses IoT: History, Present & Future Machine Learning Tutorial: Learn ML What is Algorithm? Simple & Easy Robotics Engineer Salary in India : All Roles A Day in the Life of a Machine Learning Engineer: What do they do? What is IoT (Internet of Things) Permutation vs Combination: Difference between Permutation and Combination Top 7 Trends in Artificial Intelligence & Machine Learning Machine Learning with R: Everything You Need to Know AI & ML Free Courses Introduction to NLP Fundamentals of Deep Learning of Neural Networks Linear Regression: Step by Step Guide Artificial Intelligence in the Real World Introduction to Tableau Case Study using Python, SQL and Tableau
Read More

by Mayank Kumar

07 Jul'16
Keep an Eye Out for the Next Big Thing: Machine Learning

5.2K+

Keep an Eye Out for the Next Big Thing: Machine Learning

Artificial Intelligence (AI) and Machine Learning (ML) are buzzwords that are increasingly being used to discuss upcoming trends in Data Science and other technologies. However, are these two concepts really peas in the same pod? Artificial Intelligence is a broader concept of smart machines carrying out various tasks on their own. While Machine Learning is an application of Artificial Intelligence where machines learn from data provided to them using various types of algorithms. Therefore, Machine Learning is a method of data analysis that automates analytical model building, allowing computers to find hidden insights without being explicitly programmed to do so. Sounds like the pitch-perfect solution to all our technological woes, doesn’t it? Top Machine Learning and AI Courses Online Master of Science in Machine Learning & AI from LJMU Executive Post Graduate Programme in Machine Learning & AI from IIITB Advanced Certificate Programme in Machine Learning & NLP from IIITB Advanced Certificate Programme in Machine Learning & Deep Learning from IIITB Executive Post Graduate Program in Data Science & Machine Learning from University of Maryland To Explore all our certification courses on AI & ML, kindly visit our page below. Machine Learning Certification Evolution of Machine Learning Arthur Samuel, an American pioneer in the field of computer gaming and artificial intelligence, coined the term ‘Machine Learning’ in 1959 while at IBM. During its early days, Machine Learning was born from pattern recognition with the theory that computers can learn from patterns in data without being programmed to perform specific tasks. Researchers interested in Artificial Intelligence later developed algorithms with which computers or machines could learn from data. As a result of this, whenever the machines were exposed to new data, they were able to independently adapt as well Trending Machine Learning Skills AI Courses Tableau Certification Natural Language Processing Deep Learning AI Enrol for the Machine Learning Course from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career. It’s a science that’s not new, but one that’s gaining fresh momentum, thanks mainly to new computing technologies that have evolved over the last few decades. Many Machine Learning algorithms have been around for a long time. But, the ability to automatically apply complex mathematical calculations to large data sets is a fresh development being witnessed. Here are a few examples of Machine Learning applications you might be familiar with: Online recommendations from Amazon and Netflix. YouTube detecting and removing terror content on the platform. Knowing what customers are saying about you on Twitter The Rise of Machine Learning The emergence of the internet, as well as the massive increase in digital information being generated, stored, and made available for analysis, are seen to be the two important factors that have led to the emergence of Machine Learning. With the magnitude of quality data from the internet, economical data storage options and improved data processing capabilities, Machine Learning algorithms are seen as a vehicle propelling the development of Artificial Intelligence at a scorching pace in recent times. Neural Networks A neural network works on a system of probability by being able to make statements, decisions, or predictions based on data fed to it. Moreover, a feedback loop enables further “learning” by sensing; it also modifies the learning process based on whether its decisions are right or wrong. An artificial neural network is a computer system with node networks inspired from the neurons in the animal brain. Such networks can be taught to recognise and classify patterns through witnessing examples rather than telling the algorithm how exactly to recognise and classify patterns. Machine Learning derived applications of neural networks can read pieces of text and recognise the nature of the text – whether it is a complaint or congratulatory note. They can also listen to a piece of music, decide whether it is likely to make someone happy or sad, and find other pieces of similar music. What’s more, they can even compose music expressing the same mood or theme. In the near future, with the help of Machine Learning and Artificial Intelligence, it should be possible for a person to communicate and interact with electronic devices and digital information thanks to another emerging field of AI called Natural Language Processing (NLP). NLP has become a source of cutting-edge innovation in the past few years, and one which is heavily reliant on Machine Learning. NLP applications attempt to understand human communication, both written as well as spoken, and communicate using various languages. In this context, Machine Learning helps machines understand the nuances in human language and respond in a way that a particular audience is likely to comprehend. So, who is actually using it? Most industries working with large amounts of data have recognised the value of Machine Learning. Large companies glean vital real-time actionable insights from stored data and are hence able to increase efficiency or gain an advantage over their competitors. Financial services Banks and other businesses use Machine Learning to identify important insights in data generated and thereby prevent frauds. These insights can identify investment opportunities or help investors know when to trade. Data mining can also identify clients with high-risk profiles or use cyber surveillance to warn customers about fraud and thereby minimise identity theft. Marketing and sales E-commerce websites use Machine Learning technology to analyse buying history based on previous purchases, to recommend items that you may like and promote other items. The retail industry is enlisting the ability of websites to capture data, analyse it, and use it to personalise a shopping experience or implement marketing campaigns. Summing up, Artificial Intelligence and, in particular, Machine Learning, certainly has a lot to offer today. With its promise of automating mundane tasks as well as offering creative insights, industries in every sector from banking to healthcare and manufacturing are reaping the benefits. Popular AI and ML Blogs & Free Courses IoT: History, Present & Future Machine Learning Tutorial: Learn ML What is Algorithm? Simple & Easy Robotics Engineer Salary in India : All Roles A Day in the Life of a Machine Learning Engineer: What do they do? What is IoT (Internet of Things) Permutation vs Combination: Difference between Permutation and Combination Top 7 Trends in Artificial Intelligence & Machine Learning Machine Learning with R: Everything You Need to Know AI & ML Free Courses Introduction to NLP Fundamentals of Deep Learning of Neural Networks Linear Regression: Step by Step Guide Artificial Intelligence in the Real World Introduction to Tableau Case Study using Python, SQL and Tableau Eventually, scientists hope to develop human-like Artificial Intelligence that is capable of increasing the speed of various automated functions, especially with the advent of chatbots in the internet realm. Much of the exciting progress that we have seen in recent years is due to progressive changes in Artificial Intelligence, which have been brought about by Machine Learning. This is clearly why Machine Learning is poised to become the next big thing in the data sciences sphere. So go ahead, UpGrad yourself to stay ahead of the curve.
Read More

by Varun Dattaraj

17 Oct'17
The Difference between Data Science, Machine Learning and Big Data!

7.87K+

The Difference between Data Science, Machine Learning and Big Data!

Many professionals and ‘Data’ enthusiasts often ask, “What’s the difference between Data Science, Machine Learning and Big Data?” This is a question frequently asked nowadays. Here’s what differentiates Data Science, Machine Learning and Big Data from each other: Data Science Data Science follows an interdisciplinary approach. It lies at the intersection of Maths, Statistics, Artificial Intelligence, Software Engineering and Design Thinking. Data Science deals with data collection, cleaning, analysis, visualisation, model creation, model validation, prediction, designing experiments, hypothesis testing and much more. The aim of all these steps is just to derive insights from data. Top Machine Learning and AI Courses Online Master of Science in Machine Learning & AI from LJMU Executive Post Graduate Programme in Machine Learning & AI from IIITB Advanced Certificate Programme in Machine Learning & NLP from IIITB Advanced Certificate Programme in Machine Learning & Deep Learning from IIITB Executive Post Graduate Program in Data Science & Machine Learning from University of Maryland To Explore all our certification courses on AI & ML, kindly visit our page below. Machine Learning Certification Digitisation is progressing at an exponential rate. Internet accessibility is improving at breakneck speed. More and more people are getting absorbed into the digital ecosystem. All these activities are generating a humongous amount of data. Companies are currently sitting on a data landmine. But data, by itself, is not of much use. This is where Data Science comes into the picture. It helps in mining this data and deriving insights from it; for taking meaningful action. Various Data Science tools can help us in the process of insight generation. If you are a beginner and interested to learn more about data science, check out our data scientist courses from top universities. Frameworks exist to help derive insights from data. A framework is nothing but a supportive structure. It’s a lifecycle used to structure the development of Data Science projects. A lifecycle outlines the steps —  from start to finish — that projects usually follow. In other words, it breaks down the complex challenges into simple steps. This ensures that any significant phase, which leads to the generation of actionable insights from data, is not missed out. One such framework is the ‘Cross Industry Standard Process for Data Mining’, abbreviated as the CRISP-DM framework. The other is the ‘Team Data Science Process’ (TDSP) from Microsoft. Let’s understand this with the help of an example. A bank named ‘X’, which has been in business for the past ten years. It receives a loan application from one of its customers. Now, it wants to predict whether this customer will default in repaying the loan. How can the bank go about achieving this task? Like every other bank, X must have captured data regarding various aspects of their customers, such as demographic data, customer-related data, etc. In the past ten years, many customers would have succeeded in repaying the loan, but some customers would have defaulted. How can this bank leverage this data to improve its profitability? To put it simply, how can it avoid providing loans to a customer who is very likely to default? How can they ensure not losing out on good customers who are more likely to repay their debts? Data Science can help us resolve this challenge. Raw Data —> Data Science —-> Actionable Insights Let’s understand how various branches of Data Science will help the bank overcome its challenge. Statistics will assist in the designing of experiments, finding a correlation between variables, hypothesis testing, exploratory data analysis, etc. In this case, the loan purpose or educational qualifications of the customer could influence their loan default. After performing data cleaning and exploratory study, the data becomes ready for modeling. Statistics and artificial intelligence provide algorithms for model creation. Model creation is where machine learning comes into the picture. Machine learning is a branch of artificial intelligence that is utilised by data science to achieve its objectives. Before proceeding with the banking example, let’s understand what machine learning is. Trending Machine Learning Skills AI Courses Tableau Certification Natural Language Processing Deep Learning AI Enrol for the Machine Learning Course from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career. Machine Learning “Machine learning is a form of artificial intelligence. It gives machines the ability to learn, without being explicitly programmed.” How can machines learn without being explicitly programmed, you might ask? Aren’t computers just devices made to follow instructions? Not anymore. Machine learning consists of a suite of intelligent algorithms, enabling machines to learn without being explicitly programmed for it. Machine learning helps you learn the objective function — which maps the inputs to the target variable, or independent variables to the dependent variables. In our banking example, the objective function determines the various demographics, customer and behavioural variables which influences the probability of a loan default. Independent attributes or inputs are the demographic, customer and behavioural variables of a customer. The dependent variable is either ‘to default’ or not. The objective function is an equation which maps these inputs to outputs. It’s a function which tells us which independent variables influence the dependent variable, i.e. the tendency to default. This process of deriving an objective function, which maps inputs to outputs is known as modelling. Initially, this objective function will not be able to predict precisely whether a customer will default or not. As the model encounters new instances, it learns and evolves. It improves as more and more examples become available. Ultimately, this model reaches a stage where it will be able to tell with a certain degree of precision. hings like, which customer is going to default, and whom the bank can rely on to improve its profitability. Machine learning aims to achieve ‘generalisability’. This means, the objective function — which maps the inputs to the output — should apply to the data, which hasn’t encountered it, yet. In the banking example, our model learns patterns from the data provided to it. The model determines which variables will influence the tendency to default. If a new customer applies for a loan, at this point, his/her variables are not yet seen by this model. The model should be relevant to this customer as well. It should predict reliably whether this customer will default or not. If this model is unable to do this, then it will not able to generalise the unseen data. It is an iterative process. We need to create many models to see which work, and which don’t. Data science and analysis utilise machine learning for this kind of model creation and validation. It is important to note that all the algorithms for this model creation do not come from machine learning. They can enter from various other fields. The model needs to be kept relevant at all times. If the conditions change, then the model — which we created earlier — may become irrelevant. The model needs to be checked for its predictability at different times and needs to be modified if its predictability reduces. For the banking employee to take an instant decision the moment a customer applies for a loan, the model needs to be integrated with the bank’s IT systems. The bank’s servers should host the model. As a customer applies for a loan, his variables must be captured from a website and utilised by the model running on the server. Then, this model should convey the decision — whether the credit can be granted or not — to the bank employee, instantly. This process comes under the domain of information technology, which is also utilised by data science. In the end, it is all about communicating the results from the analysis. Here, the presentation and storytelling skills are required to demonstrate the effects from the study efficiently. Design-thinking helps in visualising the results, and effectively tell the story from the analysis. Big Data The final piece of our puzzle is ‘Big Data’. How is it different from data science and machine learning? According to IBM, we create 2.5 Quintillion (2.5 × 1018) bytes of data every day! The amount of data which companies gather is so vast that it creates a large set of challenges regarding data acquisition, storage, analysis and visualisation. The problem is not entirely regarding the quantity of data that is available, but also its variety, veracity and velocity. All these challenges necessitated a new set of methods and techniques to deal with the same. Big data involves the four ‘V’s — Volume, Variety, Veracity, and Velocity — which differentiates it from conventional data. Volume: The amount of data involved here is so humongous, that it requires specialised infrastructure to acquire, store and analyse it. Distributed and parallel computing methods are employed to handle this volume of data. Variety: Data comes in various formats; structured or unstructured, etc. Structured means neatly arranged rows and columns. Unstructured means that it comes in the form of paragraphs, videos and images, etc. This kind of data also consists of a lot of information. Unstructured data requires different database systems than traditional RDBMS. Cassandra is one such database to manage unstructured data. Veracity:  The presence of huge volumes of data will not lead to actionable insights. It needs to be correct for it to be meaningful. Extreme care needs to be taken to make sure that the data captured is accurate, and that the sanctity is maintained, as it increases in volume and variety. Popular AI and ML Blogs & Free Courses IoT: History, Present & Future Machine Learning Tutorial: Learn ML What is Algorithm? Simple & Easy Robotics Engineer Salary in India : All Roles A Day in the Life of a Machine Learning Engineer: What do they do? What is IoT (Internet of Things) Permutation vs Combination: Difference between Permutation and Combination Top 7 Trends in Artificial Intelligence & Machine Learning Machine Learning with R: Everything You Need to Know AI & ML Free Courses Introduction to NLP Fundamentals of Deep Learning of Neural Networks Linear Regression: Step by Step Guide Artificial Intelligence in the Real World Introduction to Tableau Case Study using Python, SQL and Tableau Velocity: It refers to the speed at which the data is generated. 90% of data in today’s world was created in the last two years alone. However, this velocity of information generated is bringing its own set of challenges. For some businesses, real-time analysis is crucial. Any delay will reduce the value of the data and its analysis for business. Spark is one such platform which helps analyse streaming data. As time progresses, new ‘V’s get added to the definition of big data. But — volume, variety, veracity, and velocity — are the four essential constituents which differentiate data from big data. The algorithms which deal with big data, including machine learning algorithms, are optimised to leverage a different hardware infrastructure, that is utilised to handle big data. To summarise, Executive PG Programme in Data Science is an interdisciplinary field with an aim to derive actionable insights from data. Machine learning is a branch of artificial intelligence which is utilised by data science to teach the machines the ability to learn, without being explicitly programmed. Volume, variety, veracity, and velocity are the four important constituents which differentiate big data from conventional data.
Read More
Natural Language Generation: Top Things You Need to Know

6.14K+

Natural Language Generation: Top Things You Need to Know

From a linguistic point of view, language was created for the survival of human beings. The effective communication helped a primitive man to hunt, gather and survive in groups. This means a language is necessary to carry out all activities needed for not only survival but also a meaningful existence of human beings. As humans evolved so did their literary skills. From pictorial scripts to well developed universal ones, we have made an impressive progress. In fact, such remarkable progress that a machine developed by humans now can read data, write text and not in a machine, binary language but a real, conversational language. Natural Language Generation has made this possible. Top Machine Learning and AI Courses Online Master of Science in Machine Learning & AI from LJMU Executive Post Graduate Programme in Machine Learning & AI from IIITB Advanced Certificate Programme in Machine Learning & NLP from IIITB Advanced Certificate Programme in Machine Learning & Deep Learning from IIITB Executive Post Graduate Program in Data Science & Machine Learning from University of Maryland To Explore all our certification courses on AI & ML, kindly visit our page below. Machine Learning Certification What is Natural Language Generation? Natural language is an offshoot of Artificial Intelligence. It is a tool to automatically analyse data, interpret it, identify the important information and narrow it down to a simple text, to make decision making in business easier, faster and of course, cheaper. It crunches numbers and drafts a narrative for you. Trending Machine Learning Skills AI Courses Tableau Certification Natural Language Processing Deep Learning AI Learn ML courses from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career. What are the different variations of Natural Language Generation? Basic Natural Language Generation: The basic form of NLG converts data into text through Excel-like functions. For example, a mail merge that restates numbers into a language. Templated Natural Language Generation: In this type of NGL tool, a user takes the call on designing content templates and interpreting the output. Templated systems are restricted in their capability to scan multiple data sources, perform advanced analytics. Advanced Natural Language Generation: It is the ‘smartest’ way of analysing data. It processes the data right from the beginning and separates it based on its significance for a particular audience, and then writes the narrative with relevant information in a conversational tone. For example, if a data analyst wants to know how a particular product is doing in a market, an advanced NLG tool would write a report by segregating the data of only the required product. Do we really need natural language generation? A number of devices are connected to the internet creating a huge Internet of Things. All these devices are creating data at a lightning speed leading to Big Data generation. It is almost humanly impossible to analyse, interpret and draw rational interference from this enormous data. Along with data analysis and accurate interpretation the need for the optimum use of resources, cost cutting and time management are the essentials for a modern business to survive, grow and flourish. Natural Language Generation helps up to effectively achieve all these goals in one go. Additionally, when a machine can do these routine tasks, and accurately. So, valuable human resources can indulge themselves in the activities that require innovation, creativity and problem-solving. Will Natural Language Generation kill jobs? First of all, not all kinds of narratives can be written by Natural Language Generation tools. It is only for creating a text based on data. Creative writing, engaging content is developed not only by analytical skills but with the help of major emotional involvement. The passion of an individual, their skills, their ability to cater complex terms in simpler formats can’t be replaced. Additionally, to rationalise the text created by Natural Language Generation tools, human intervention is critical. Natural Language Generation only augments the job and enriches the life of employees by freeing them from menial jobs. Alain Kaeser, founder of Yseop has rightly acknowledged that- “The next industrial revolution will be the artificial intelligence revolution and the automation of knowledge work and repetitive tasks to enhance human capacity”. Why should you get a hang of Natural Language Generation? A research commissioned by Forrester Research anticipated a 300% increase in investment in artificial intelligence in 2017 compared to 2016. The Artificial Intelligence market will grow from $8 billion in 2016 to more than $47 billion in 2020. Based on this report, Forbes magazine has come up with a list of the ‘hottest ten Artificial Intelligence technologies’ that will rule the market in the near future. Natural Language Generation is one of them and it is set to see a huge boost. Examples and Applications of Natural Language Generation Natural Language Generation techniques are put to use across various industries as per their requirements. Healthcare-Pharma, Banking services, Digital marketing… it’s everywhere! From fund reporting in finance and campaign analytics reporting in marketing to personalised client alerts for preparing dashboards in sales and customer service maintenance, it is used to generate effective results for all departments in an organisation. Let’s have a quick look at how NLG has varied applications in various departments: Marketing – Two main responsibilities of a marketing department are designing market strategy and conducting market research. Both of these activities heavily depend on data analysis, and in today’s world of big data, it is becoming increasingly complex. Natural Language Generation tools can help you scan big data, analyse it and write reports for you within a few hours. Sales – A sales analysis report indicates the trends in a company’s sales volume over a period of time. A sales analysis report throws light on the factors that affects sales, like season, competitors strategy, advertising efforts etc. Managers use sales analysis reports to recognise market opportunities and areas where they could increase volume. These reports are purely based on humongous data. Natural Language Generation programs save your time and efforts of manually scanning data, finding trends and writing reports. Once you feed the inputs, it takes care of all of these activities. Banking and finance – May it be a finance department of an organisation or an investment bank, financial reports stating the financial health of a company needs to be written and sent out to shareholders, investors, rating agencies, government agencies etc. The general financial statements like balance sheets, Statement of cash flows, Income statement etc. are loaded with numbers and a reader likes to have a quick understanding of these statements. Natural Language Generation software scans through these statements and presents this information in a simple, text format rather than complicated accounting one. Healthcare and medicine – Recently Natural Language Generation tools are being used to summarise e-medical records. Additional research in this area is opening doors to prudent medical decision-making for medical professionals. It is also being used in communicating with patients, as a part of patient awareness programs in India, as per the NCBI report. The data collected through medical research like what kind of lifestyle diseases are most dreadful or what kinds of habits are healthy can be summarized in a simple language for patients which is extremely useful for the doctors to make a case for their advice. And this is just the tip of the iceberg. The applications of NLG tools are widespread already and are ready to take off to greater heights in the future.   Techniques of natural language generation – How to get started A refined Natural Language Generation system needs to inject some aspects of planning and amalgamation of information to enable the NLG tools to generate the text which appears natural and interesting. The general stages of natural language generation, as proposed by Dale and Reiter in their book ‘Building Natural Language Generation Systems’ are: Content determination: In this stage, a data analyst must decide what kind of information to present by using their discretion with respect to relevance. For example, deciding what kind of information a share trader would want to know vs what kind of information a dealer in the commodity market would want to know. Document structuring: In this stage, a user will have to decide the sequence, format of content and the desired template. For example, to decide the order of large cap, mid cap, small cap shares while writing a narrative about equity movement in the stock market. Aggregation: No repetition is the basic rule of any report writing. To keep it simple and improve readability, merging sentences, omitting repetitive words, phrases etc, falls under this stage. For example, if NLG software is writing a report on sales and there is no substantial change in volume of sales for a few months, there are chances NLG software might write repetitive paragraphs for no substantial information. You will then have to condense it in a way it does not become long and boring. Lingual choice: Deciding what words to use exactly to describe particular concepts. For example, deciding whether to use the word ‘medium’ or ‘moderate’ while describing a change. Best software products available for natural language generation There are a variety of software products available to help you get started with Natural Language Generation. Quill, Syntheses, Arria, Amazon Polly, Yseop are popular ones. You can make a decision based on the industry you are operating in, for the department you will be deploying the tool, exact nature of report creation, etc. Let us see what kind of aid does these programs offer to the businesses. Yseop: Yseop Compose’s Natural Language Generation software enables data-driven decision making by explaining insights in a plain language. Yseop Compose is the only multilingual Natural Language Generation software and hence truly global. Amazon Polly: It is a software that turns text into lifelike speech, allowing you to create applications that talk, and build entirely new categories of speech-enabled products. Arria: Arria NLG Platform is the one that integrates cutting-edge techniques in data analytics, artificial intelligence and computational linguistics. It analyses large and diverse data sets and automatically writes tailored, actionable reports on what’s happening within that data, with no human intervention, at vast scale and speed. Quill: It is an advanced NLG platform which comprehends user intent and performs relevant data analysis to deliver Intelligent Narratives—automated stories full of audience-relevant, insightful information. Synthesys: It is one of the popular NLG software products that scans through all data and highlights the important people, places, organizations, events and facts being discussed, resolve highlighted points and determines what’s important, connecting the dots together and figures out what the final picture means by comparing it with the opportunities, risks and anomalies users are looking for. Natural Language Generation tools automate analysis and increase the efficacy of Business Intelligence tools. Rather than generating charts and tables, NLG tools interpret the data and draft analysis in a written form that communicates precisely what’s important to know. These tools perform regular analysis of predefined data sets, eliminate the manual efforts required to draft reports and the skilled labour required to analyse and interpret the results. Popular AI and ML Blogs & Free Courses IoT: History, Present & Future Machine Learning Tutorial: Learn ML What is Algorithm? Simple & Easy Robotics Engineer Salary in India : All Roles A Day in the Life of a Machine Learning Engineer: What do they do? What is IoT (Internet of Things) Permutation vs Combination: Difference between Permutation and Combination Top 7 Trends in Artificial Intelligence & Machine Learning Machine Learning with R: Everything You Need to Know AI & ML Free Courses Introduction to NLP Fundamentals of Deep Learning of Neural Networks Linear Regression: Step by Step Guide Artificial Intelligence in the Real World Introduction to Tableau Case Study using Python, SQL and Tableau What are the best resources to learn Natural Language Generation? Gartner, a leading research and advisory company forecasts that most companies will have to employ a Chief Data officer by 2019. With the gigantic amount of data available, it is important to decide which information can add business value, drive efficiency and improve risk management. This will be the responsibility of Data Officers. With increasing global demand for the profession, there can be no better time to learn about Natural Language Generation which is a critical part of Data Science and Artificial Intelligence. Though Natural Language generation has a huge scope, there are very few comprehensive academic programs designed to train candidates to be future ready. However, with a great vision, UpGrad offers a PG Diploma in Machine Learning and AI, in partnership with IIIT-Bangalore, which aims to build highly skilled professionals in India to cater to the increasing global demand. It gives you a chance to learn from a comprehensive collection of case-studies, hand-picked by industry experts, to give you an in-depth understanding of how Machine Learning & Artificial Intelligence impact industries like Telecom, Automobile, Finance & more. What are you waiting for? Don’t let go of this wonderful opportunity, start exploring today!
Read More

by Maithili Pradhan

30 Jan'18
A Beginner’s Guide To Natural Language Understanding

8.3K+

A Beginner’s Guide To Natural Language Understanding

“A computer would deserve to be called intelligent if it could deceive a human into believing that it was human.” – Alan Turing Best Machine Learning and AI Courses Online Master of Science in Machine Learning & AI from LJMU Executive Post Graduate Programme in Machine Learning & AI from IIITB Advanced Certificate Programme in Machine Learning & NLP from IIITB Advanced Certificate Programme in Machine Learning & Deep Learning from IIITB Executive Post Graduate Program in Data Science & Machine Learning from University of Maryland To Explore all our courses, visit our page below. Machine Learning Courses The entire gamut of artificial intelligence is based on machines being able to ‘understand’ and ‘respond’ to human beings. Which is impossible without the capability of machines to interact with humans in their natural language, like other human beings. Moreover, understanding does not involve the mere exchange of information and data but an exchange of emotions, feelings, ideas and intent. Can machines ever do that? Well, the answer is affirmative and it is not even that surprising anymore. What is this miraculous technology that smoothly facilitates the interaction between humans and machines? It is Natural Language Understanding. What is Natural Language Understanding? Natural Language Understanding is a part of Natural Language Processing. It undertakes the analysis of content, text-based metadata and generates summarized content in natural, human language. It is opposite to the process of Natural Language Generation. NLG deals with input in the form of data and generates output in the form of plain text while Natural Language Understanding tools process text or voice that is in natural language and generates appropriate responses by summarizing, editing or creating vocal responses. In-demand Machine Learning Skills Artificial Intelligence Courses Tableau Courses NLP Courses Deep Learning Courses Get Machine Learning Certification from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career. Natural Language Understanding Vs Natural Language Processing Natural Language Processing is a wide term which includes both Natural Language Understanding and Natural Language Generations along with many other techniques revolving around translating and analysing natural language by machines to perform certain commands.    Examples of Natural Language Processing Natural Language Processing is everywhere and we use it in our daily lives without even realising it. Do you know how spam messages are separated from your emails? Or autocorrect and predictive typing that saves so much of our time, how does that happen? Well, it is all part of Natural Language Processing. Here are some examples of Natural Language Processing technologies used widely: Intelligent personal assistants – We are all familiar with Siri and Cortana. These mobile software products that perform tasks, offer services, with a combination of user input, location awareness, and the ability to access information from a variety of online sources are undoubtedly one of the biggest achievements of natural language processing. Machine translation – To read a description of a beautiful picture on Instagram or to read updates on Facebook, we all have used that ‘see translation’ command at least once. And google translation services helps in urgent situations or sometimes just to learn few new words. These are all examples of machine translations, where machines provide us with translations from one natural language to another. Speech recognition – Converting spoken words into data is an example of natural language processing. It is used for multiple purposes like dictating to Microsoft Word, voice biometrics, voice user interface, etc. Affective computing – It is nothing but emotional intelligence training for machines. They learn to understand your emotions, feelings, ideas to interact with you in more humane ways. Natural language generation – Natural language generation tools scan structured data, undertake analysis and generate information in text format produced in natural language. Natural language understanding – As explained above, it scans content written in natural languages and generates small, comprehensible summaries of text. Learn ML courses from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career. Best tools for Natural Language Understanding available today Natural Language Processing deals with human language in its most natural form and on a real-time basis, as it appears in social media content, emails, web pages, tweets, product descriptions, newspaper articles, and scientific research papers, etc, in a variety of languages. Businesses need to keep a tab on all this content, constantly. Here are a few popular natural language understanding software products which effectively aid them in this daunting task. Wolfram – Wolfram Alpha is an answer engine developed by Wolfram Alpha LLC (a subsidiary of Wolfram Research). It is an online service that provides answers to factual questions by computing the answer from externally sourced, “curated data”. Natural language toolkit – The Natural Language Toolkit, also known as NLTK, is a suite of programs used for symbolic and statistical natural language processing (NLP) for the English language. It is written in the Python programming language and was developed by Steven Bird and Edward Loper at the University of Pennsylvania. Stanford coreNLP – Stanford CoreNLP is an annotation-based NLP pipeline that offers core natural language analysis. The basic distribution provides model files for the analysis of English, but the engine is compatible with models for other languages. GATE (General Architecture for Text Engineering) – It offers a wide range of natural language processing tasks. It is a mature software used across industries for more than 15 years. Apache openNLP – The Apache OpenNLP is a toolkit based on machine learning to process natural language text. It is written in Java and is produced by Apache software foundation. It offers services like tokenizers, chucking, parsing, part of speech tagging, sentence segmentation, etc. Applications of Natural Language Understanding As we have already seen, natural language understanding is basically nothing but a smart machine reading comprehension. Now let’s have a close look at how it is used to promote the efficiency and accuracy, while saving time and efforts, of human resources, which can then be put to better use. Collecting data and data analysis – To be able to serve well, a business must know what is expected out of them. Data on customer feedback is not numeric data like sales or financial statements. It is open-ended and text heavy. For companies to identify patterns and trends throughout, this data and taking action as per identified gaps or insights, is crucial for survival and growth. More and more companies are realizing that implementing a natural language understanding solution provides strong benefits to analysing metadata like customer feedback and product reviews. Natural language understanding in such cases proves to be more effective and accurate than traditional methods like hand-coding. It helps the customer’s voice to reach you clearer and faster, which leads to effective strategizing and productive implementation. Reputation monitoring –  Customer feedback is just a tip of the iceberg as compared to the real feelings of customers about the brand. As customers, we hardly participate in customer survey feedbacks. Most of the real customer sentiments hence are trapped in unstructured data. News, blog posts, chats, and social media updates contain huge amounts of such data which is more natural and can be used to know the ‘real’ feelings of customers about the product or service. Natural language understanding software products help businesses to scan through such scattered data and draw practical inferences. Customer service – Natural Language Understanding is able to communicate with untrained individuals and can understand their intent. NLU is capable of understanding the meaning in spite of some human errors like mispronunciations or transposed letters or words. It also uses algorithms that break down human speech to structured ontology and fishes out the meaning, intent, sentiment, and the crux of human speech. One of the most important goals of NLU is to create chatbots or human interacting bots that can effectively communicate with humans without any human supervision. There are various software products like Nuance which are already involved in customer interaction. Popular AI and ML Blogs & Free Courses IoT: History, Present & Future Machine Learning Tutorial: Learn ML What is Algorithm? Simple & Easy Robotics Engineer Salary in India : All Roles A Day in the Life of a Machine Learning Engineer: What do they do? What is IoT (Internet of Things) Permutation vs Combination: Difference between Permutation and Combination Top 7 Trends in Artificial Intelligence & Machine Learning Machine Learning with R: Everything You Need to Know AI & ML Free Courses Introduction to NLP Fundamentals of Deep Learning of Neural Networks Linear Regression: Step by Step Guide Artificial Intelligence in the Real World Introduction to Tableau Case Study using Python, SQL and Tableau Automated trading – Capital market trading automation is not a new phenomenon anymore. Multiple software products and platforms are now available that analyse market movements, the profile of industries and financial strength of a company and based on technical analysis design the trading patterns. Advanced Natural Language Understanding tools which scan through various sources like financial statements, reports, market news are the basis of automated trading systems. Market Intelligence – “What are competitors doing?” is one of the most critical information businesses need on a real-time basis. Information influences markets. Information exchange between various stakeholders designs and redesigns market dynamics all the time. Keeping a close watch on the status of an industry is essential to developing a powerful strategy, but the channels of content distribution today (RSS feeds, social media, emails) generate so much information that it’s been increasingly difficult to keep a tab on such unstructured, multi-sourced content. Financial markets have started using natural language understanding tools rigorously to keep track of information exchange in the market and help them reach it immediately. Due to such varied functions carried out by natural language understanding programs, its importance in trade, business, commerce and the industry is ever increasing. It is a smart move to learn natural language understanding programs to ensure yourself a successful career. What is the best way to learn Natural Language Understanding? The best way to prepare yourself for a brighter future in technological endeavors is to understand the algorithms of Artificial intelligence. The Post Graduate Diploma in Machine Learning and AI by UpGrad offers a chance to master concepts like Neural Networks, Natural Language Processing, Graphical Models and Reinforcement Learning. The most unique aspect of this course is the career support. And, the industry mentorship, which will help you prepare yourself for intense competition in the industry, within your actual job. So, let’s learn to use software products widely used in industry mentioned earlier like NLKT. This program aims at producing well-rounded data scientists and AI professionals with thorough knowledge of mathematics, expertise in relevant tools/languages and understanding of cutting-edge algorithms and applications. Start preparing today for a better tomorrow! Learn ML courses from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.
Read More

by Maithili Pradhan

30 Jan'18
Neural Networks for Dummies: A Comprehensive Guide

10.99K+

Neural Networks for Dummies: A Comprehensive Guide

Our brain is an incredible pattern-recognizing machine. It processes ‘inputs’ from the outside world, categorizes them (that’s a dog; that’s a slice of pizza; ooh, that’s a bus coming towards me!), and then generates an ‘output’ (petting the dog; the yummy taste of that pizza; getting out of the way of the bus!). Best Machine Learning and AI Courses Online Master of Science in Machine Learning & AI from LJMU Executive Post Graduate Programme in Machine Learning & AI from IIITB Advanced Certificate Programme in Machine Learning & NLP from IIITB Advanced Certificate Programme in Machine Learning & Deep Learning from IIITB Executive Post Graduate Program in Data Science & Machine Learning from University of Maryland To Explore all our courses, visit our page below. Machine Learning Courses All of this with little conscious effort, almost impulsively. It’s the very same system that senses if someone is mad at us, or involuntarily notices the stop signal as we speed past it. Psychologists call this mode of thinking ‘System 1’, and it includes innate skills — like perception and fear — that we share with other animals. (There’s also a ‘System 2’, to know more about it, check out the extremely informative Thinking, Fast and Slow by Daniel Kahneman). How is all of this related to Neural Networks, you ask? Wait, we’ll get there in a second. Look at the image above, just your regular numbers, distorted to help you explain the learning of Neural Networks better. Even looking cursorily, your mind will prompt you with the words “192”. You surely didn’t go “Ah, that seems like a straight line, I think it’s a 1”. You didn’t compute it – it happened instantly. In-demand Machine Learning Skills Artificial Intelligence Courses Tableau Courses NLP Courses Deep Learning Courses Fascinating, right? There is a very simple reason for this – you’ve come across the digit so many times in your life, that by trial and error, your brain automatically recognizes the digit if you present it with something even remotely close to it. Let’s cut to the chase. What exactly is a Neural Network? How does it work? By definition, a neural network is a system of hardware or softwares, patterned after the working of neurons in the human brain. Basically, it helps computers think and learn like humans. An example will make this clearer: As a child, if we ever touched a hot coffee mug and it burnt us, we made sure not to touch a hot mug ever again. But did we have any such concept of hurt in our conscience BEFORE we touched it? Not really. This adjustment of our knowledge and understanding of the world around us is based on recognizing patterns. And, like us, computers, too, learn through the same type of pattern recognition. This learning forms the whole basis of the working of neural networks. Traditional computer programs work on logic trees – If A happens, then B happens. All the potential outcomes for each of the systems can be preprogrammed. However, this eliminates the scope of flexibility. There’s no learning there. And that’s where Neural Networks come into the picture! A neural network is built without any specific logic. Essentially, it is a system that is trained to look for and adapt to, patterns within data. It is modeled exactly after how our own brain works. Each neuron (idea) is connected via synapses. Each synapse has a value that represents the probability or likelihood of the connection between two neurons to occur. Take a look at the image below: What exactly are neurons, you ask? Simply put, a neuron is just a singular concept. A mug, the colour white, tea -, the burning sensation of touching a hot mug, basically anything. All of these are possible neurons. All of them can be connected, and the strength of their connection is decided by the value of their synapse. Higher the value, better the connection. Let’s see one basic neural network connection to make you understand better: Each neuron is the node and the lines connecting them are synapses. Synapse value represents the likelihood that one neuron will be found alongside the other. So, it’s pretty clear that the diagram shown in the above image is describing a mug containing coffee, which is white in colour and is extremely hot. All mugs do not have the properties like the one in question. We can connect many other neurons to the mug. Tea, for example, is likely more common than coffee. The likelihood of two neurons being connected is determined by the strength of the synapse connecting them. Greater the number of hot mugs, the stronger the synapse. However, in a world where mugs are not used to hold hot beverages, the number of hot mugs would decrease drastically. Incidentally, this decrease would also result in lowering the strength of the synapses connecting mugs to heat. So, Becomes This small and seemingly unimportant description of a mug represents the core construction of neural networks. We touch a mug kept on a table — we find that it’s hot. It makes us think all mugs are hot. Then, we touch another mug – this time, the one kept on the shelf – it’s not hot at all. We conclude that mugs in the shelf aren’t hot. As we grow, we evolve. Our brain has been taking in data all this time. This data makes it determine an accurate probability as to whether or not the mug we’re about to touch will be hot. Neural Networks learn in the exact same way. Now, let’s talk a bit aboutthe first and the most basic model of a neural network: The Perceptron! What is a Perceptron? A perceptron is the most basic model of a neural network. It takes multiple binary inputs: x1, x2, …, and produces a single binary output. Let’s understand the above neural network better with the help of an analogy. Say you walk to work. Your decision of going to work is based on two factors majorly: the weather, and whether it is a weekday or not. The weather factor is still manageable, but working on weekends is a big no! Since we have to work with binary inputs, let’s propose the conditions as yes or no questions. Is the weather fine? 1 for yes, 0 for no. Is it a weekday? 1 yes, 0 no. Remember, we cannot explicitly tell the neural network these conditions; it’ll have to learn them for itself. How will it decide the priority of these factors while making a decision? By using something known as “weights”. Weights are just a numerical representation of the preferences. A higher weight will make the neural network consider that input at a higher priority than the others. This is represented by the w1, w2…in the flowchart above. “Okay, this is all pretty fascinating, but where do Neural Networks find work in a practical scenario?” Real-life applications of Neural Networks If you haven’t yet figured it out, then here it is, a neural network can do pretty much everything as long as you’re able to get enough data and an efficient machine to get the right parameters. Anything that even remotely requires machine learning turns to neural networks for help. Deep learning is another domain that makes extensive use of neural networks. It is one of the many machine learning algorithms that enables a computer to perform a plethora of tasks such as classification, clustering, or prediction. With the help of neural networks, we can find the solution of such problems for which a traditional-algorithmic method is expensive or does not exist. Neural networks can learn by example, hence, we do not need to program it to a  large extent. Neural networks are accurate and significantly faster than conventional speeds. Because of the reasons mentioned above and more, Deep Learning, by making use of Neural Networks, finds extensive use in the following areas: Speech recognition: Take the example of Amazon Echo Dot – magic speakers that allow you to order food, get news and weather updates, or simply buy something online just by talking it out. Handwriting recognition: Neural networks can be trained to understand the patterns in somebody’s handwriting. Have a look at Google’s Handwriting Input application – which makes use of handwriting recognition to seamlessly convert your scribbles into meaningful texts. Face recognition: From improving the security on your phone (Face ID) to the super-cool Snapchat filters – face recognition is everywhere. If you’ve ever uploaded a photo on Facebook and were asked to tag the people in your photo, you know what face recognition is! Providing artificial intelligence in games: If you’ve ever played chess against a computer, you already know how artificial intelligence powers games and game development. It’s to the extent that players use AI to improve upon their tactics and try their strategies first-hand. Popular AI and ML Blogs & Free Courses IoT: History, Present & Future Machine Learning Tutorial: Learn ML What is Algorithm? Simple & Easy Robotics Engineer Salary in India : All Roles A Day in the Life of a Machine Learning Engineer: What do they do? What is IoT (Internet of Things) Permutation vs Combination: Difference between Permutation and Combination Top 7 Trends in Artificial Intelligence & Machine Learning Machine Learning with R: Everything You Need to Know AI & ML Free Courses Introduction to NLP Fundamentals of Deep Learning of Neural Networks Linear Regression: Step by Step Guide Artificial Intelligence in the Real World Introduction to Tableau Case Study using Python, SQL and Tableau In Conclusion… Neural networks form the backbone of almost every big technology or invention you see today. It’s only fair to say that imagining deep/machine learning without neural networks is next to impossible. Depending on the way you implement a network and the kind of learning you put to use, you can achieve a lot out of a neural network, as compared to a traditional computer system. Learn ML courses from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.
Read More

by Reetesh Chandra

06 Feb'18