- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Ultimate Guide to Object Detection Using Deep Learning [2024]
Updated on 04 January, 2024
15.84K+ views
• 14 min read
Table of Contents
Introduction
Object detection, in simple terms, is a method that is used to recognize and detect different objects present in an image or video and label them to classify these objects. Object detection typically uses different algorithms to perform this recognition and localization of objects, and these algorithms utilize deep learning to generate meaningful results.
Deep learning object detection is a fast and effective way to predict an object’s location in an image, which can be helpful in many situations. RCNN or Region-based Convolutional Neural Networks, is one of the pioneering approaches that is utilised in object detection using deep learning.
Best Machine Learning and AI Courses Online
Read: Check out our free NLP course
Object Detection
Object detection technique helps in the recognition, detection, and localization of multiple visual instances of objects in an image or a video. It provides a much better understanding of the object as a whole, rather than just basic object classification. This method can be used to count the number of instances of unique objects and mark their precise locations, along with labeling. With time, the performance of this process has also improved significantly, helping us with real-time use cases. All in all, it answers the question: “What object is where and how much of it is there?”.
What is an Object?
An object is an element that can be represented visually. The physical characteristics of an object do not have a wide range of variability. An object must be semi-rigid to be detected and differentiated.
In-demand Machine Learning Skills
History of Object Detection
In the last 20 years, the progress of object detection has generally gone through two significant development periods, starting from the early 2000s:
1. Traditional object detection- the early 2000s to 2014.
2. Deep learning-based detection- after 2014.
The technical evolution of object detection started in the early 2000s and the detectors at that time. They followed the low-level and mid-level vision and followed the method of ‘recognition-by-components’. This method enabled object detection as a measurement of similarity between the object components, shapes, and contours, and the features that were taken into consideration were distance transforms, shape contexts, and edgeless, etc. Things did not go well and then machine detection methods started to come into the picture to solve this problem.
Multi-scale detection of objects was to be done by taking those objects into consideration that had “different sizes” and “different aspect ratios”. This was one of the main technical challenges in object detection in the early phases. But, after 2014, with the increase in technical advancements, the problem was solved. This brought us to the second phase of object detection, where the tasks were accomplished using deep learning.
Concept
The main concept behind this process is that every object will have its features. These features can help us to segregate objects from the other ones. Object detection methodology uses these features to classify the objects. The same concept is used for things like face detection, fingerprint detection, etc.
Let us take an example, if we have two cars on the road, using the object detection algorithm, we can classify and label them.
Definition
Object detection is a process of finding all the possible instances of real-world objects, such as human faces, flowers, cars, etc. in images or videos, in real-time with utmost accuracy. The object detection technique uses derived features and learning algorithms to recognize all the occurrences of an object category. The real-world applications of object detection are image retrieval, security and surveillance, advanced driver assistance systems, also known as ADAS, and many others.
Read: Top 10 Deep Learning techniques
General description of Object Detection
We humans can detect various objects present in front of us and we also can identify all of them with accuracy. It is very easy for us to count and identify multiple objects without any effort. Recent developments in technologies have resulted in the availability of large amounts of data to train efficient algorithms, to make computers do the same task of classification and detection.
There are so many terms related to object recognition like computer vision, object localization, object classification, etc. and it might overwhelm you as a beginner, so let us know all these terms and their definitions step by step:
- Computer Vision: It is a field of artificial intelligence that enables us to train the computers to understand and interpret the visuals of images and videos using algorithms and models.
- Image Classification: It involves the detection and labeling of images using artificial intelligence. These images are classified using the features given by the users.
- Object Localization: It involves the detection of different objects in a given visual and draws a boundary around them, mostly a box, to classify them.
- Object Detection: It involves both of these processes and classifies the objects, then draws boundaries for each object and labels them according to their features.
All of these features constitute the object recognition process.
How does Object Detection work?
Now that we have gone through object detection and gained knowledge on what it is, now it’s the time to know how it works, and what makes it work. We can have a variety of approaches, but there are two main approaches- a machine learning approach and a deep learning approach. Both of these approaches are capable of learning and identifying the objects, but the execution is very different.
Also Read: TensorFlow Object detection Tutorial
Methods for Object Detection
Object detection can be done by a machine learning approach and a deep learning approach. The machine learning approach requires the features to be defined by using various methods and then using any technique such as Support Vector Machines (SVMs) to do the classification. Whereas, the deep learning approach makes it possible to do the whole detection process without explicitly defining the features to do the classification. The deep learning approach is majorly based on Convolutional Neural Networks (CNNs).
Machine Learning Methods
- Scale-Invariant Feature Transform (SIFT)
It is counted amongst the most involved algorithms as it performs four major tasks: scale-space peak selection, orientation assignment, key point description and key point localization. Some of the major advantages of using this algorithm include locality, detailed distinctiveness, real-time performance, the ability to extend to a wide range of different features and robustness.
2. Histogram of Oriented Gradients (HOG) features
It is a feature descriptor similar to Canny Edge Detector and SIFT. This uses the technique of counting occurrences of gradient orientation in a localized portion of the image. This descriptor mainly focuses on the shape of an object. It is better than most edge descriptors as it takes the help of the magnitude and the gradient angle to assess the object’s features. It then produces a histogram for the region it assessed using the magnitude and orientations of the gradient.
3. Viola-Jones object detection framework
This object detection framework works best in the case of detecting human faces. This object detection framework combines the best of Haar-like features, Integral Images, the AdaBoost Algorithm and the Cascade Classifier in order to curate a system that is best in class for object detection and is highly accurate.
Deep Learning Methods
- Region Proposals (R-CNN, Fast R-CNN, Faster R-CNN) In this method, the region proposal layer outputs bounding boxes around the objects of the image as a part of the region proposal network. The image gets divided under this process into some superpixels and then combined adjacent to the region.
- You Only Look Once (YOLO) This algorithm works in real-time and helps recognise various objects in a picture. This algorithm uses a regression method, which helps provide class probabilities of the subjected image. It works by devoting the image into N grids with an equal dimensional region of SxS.
- Deformable convolutional networks This method of mathematical operations allows the merging of two sets of information. With DCN, 2D offsets are added into the regular grid sampling locations into the standard convolution. This helps create free-form deformation of the sampling grid. This network filter is also known as a kernel or future detector.
- Refinement Neural Network for Object Detection (RefineDet) This model is equally famous in object detection using deep learning and is often used as an alternative to YOLO, SSD and CNN models. This model generates a predetermined number of bounding boxes and scores that indicate the existence of the unique kinds of items in the boxes. Two major components of this model are the object detection module (ODM) and the anchor refinement module (ARM).
- Retina-Net This object detection model is chosen to be the best-performing one, particularly in the case of dense and small-scale objects. That is why it is mainly used in aerial and satellite imagery. It is a one-stage object detection model which takes the help of a focal loss function to address the class imbalance while training.
We shall learn about the deep learning methods in detail, but first, let us know what is machine learning, what is deep learning, and what is the difference between them.
What is Machine Learning?
Machine learning is the application of Artificial Intelligence for making computers learn from the data given to it and then make decisions on their own similar to humans. It gives computers the ability to learn and make predictions based on the data and information that is fed to it and also through real-world interactions and observations. Machine learning, basically, is the process of using algorithms to analyze data and then learn from it to make predictions and determine things based on the given data.
Machine learning algorithms can take decisions on themselves without being explicitly programmed for it. These algorithms make mathematical models based on the given data, known as a ‘training set’, to make the predictions. In machine learning algorithms, we need to provide the features to the system, to make them do the learning based on the given features, this process is called Feature Engineering.
The day to day examples of machine learning applications is voice assistants, email-spam filtering, product recommendations, etc.
How object detection using machine learning is done?
Object detection using machine learning is supervised in nature. Supervised learning is a machine learning process that utilises prelabelled training data and based on those datasets the machine tries to predict the outcomes of the given problem. Apart from object detection. Supervised learning can also be used in image classification, risk assessment, spam filtering etc.
Now in the case of object detection deep learning, the area of application can greatly differ. The reason is image classification can only assess whether or not a particular object is present in the image but fails to tell its location of it. Whereas deep learning object detection can do all of it, as it uses convolution layers to detect visual features.
Along with object detection deep learning, the dataset used for the supervised machine learning problem is always accompanied by a file that includes boundaries and classes of its objects.
What is Deep Learning?
Deep learning, which is also sometimes called deep structured learning, is a class of machine learning algorithms. Deep learning uses a multi-layer approach to extract high-level features from the data that is provided to it. It doesn’t require the features to be provided manually for classification, instead, it tries to transform its data into an abstract representation. It simply learns by examples and uses it for future classification. Deep learning is influenced by the artificial neural networks (ANN) present in our brains.
Most of the deep learning methods implement neural networks to achieve the results. All the deep learning models require huge computation powers and large volumes of labeled data to learn the features directly from the data. The day to day applications of deep learning is news aggregation or fraud news detection, visual recognition, natural language processing, etc.
Object Detection using Deep Learning
Now that we know about object detection and deep learning very well, we should know how we can perform object detection using deep learning.
These are the most used deep learning models for object detection:
1. R-CNN model family: It stands for Region-based Convolutional Neural Networks
- R-CNN
- Fast R-CNN
- Faster R-CNN
2. YOLO model family: It stands for You Look Only Once
- YOLOv1
- YOLOv2 and YOLOv3
Let us look at them one by one and understand how they work.
The object detection process involves these steps to be followed:
- Taking the visual as an input, either by an image or a video.
- Divide the input visual into sections, or regions.
- Take each section individually, and work on it as a single image
- Passing these images into our Convolutional Neural Network (CNN) to classify them into possible classes.
- After the classification, we can combine all the images and generate the original input image, but also with the detected objects and their labels.
Region-based Convolutional Neural Networks (R-CNN) Family
There are several object detection models under the R-CNN Family. These detection models are based on the region proposal structures. These features have made great development with time, increasing accuracy and efficiency.
The different models under R-CNN are:
- R-CNN
The R-CNN method uses a process called selective search to find out the objects from the image. This algorithm generates a large number of regions and collectively works on them. These collections of regions are checked for having objects if they contain any object. The success of this method depends on the accuracy of the classification of objects.
- Fast-RCNN
The Fast-RCNN method uses the structure of R-CNN along with the SPP-net (Spatial Pyramid Pooling) to make the slow R-CNN model faster. The Fast-RCNN uses the SPP-net to calculate the CNN representation for the whole image only once. It then uses this representation to calculate the CNN representation for each patch generated by the selective search approach of R-CNN. The Fast-RCNN makes the process train from end-to-end.
The Fast-RCNN model also includes the bounding box regression along with the training process. This makes both the processes of localization and classification in a single process, making the process faster.
- Faster-RCNN
The Faster-RCNN method is even faster than the Fast-RCNN. The Fast-RCNN was fast but the process of selective search and this process is replaced in Faster-RCNN by implementing RPN (Region Proposal Network). The RPN makes the process of selection faster by implementing a small convolutional network, which in turn, generates regions of interest. Along with RPN, this method also uses Anchor Boxes to handle the multiple aspect ratios and scale of objects. Faster-RCNN is one of the most accurate and efficient object detection algorithms.
R-CNN | Fast-RCNN | Faster-RCNN | |
Test time per image | 50 seconds | 2 seconds | 0.2 seconds |
Speed | 1x | 25x | 250x |
You Look Only Once (YOLO) Family
The R-CNN approach that we saw above focuses on the division of a visual into parts and focus on the parts that have a higher probability of containing an object, whereas the YOLO framework focuses on the entire image as a whole and predicts the bounding boxes, then calculates its class probabilities to label the boxes. The family of YOLO frameworks is very fast object detectors.
The different models of YOLO are discussed below:
- YOLOv1
This model is also called the YOLO unified, for the reason that this model unifies the object detection and the classification model together as a single detection network. This was the first attempt to create a network that detects real-time objects very fast. YOLO only predicts a limited number of bounding boxes to achieve this goal.
- YOLOv2 and v3
YOLOv2 and YOLOv3 are the enhanced versions of the YOLOv1 framework. YOLOv2 is also called YOLO9000. The YOLOv1 framework makes several localization errors, and YOLOv2 improves this by focusing on the recall and the localization. The YOLOv2 uses batch normalization, anchor boxes, high-resolution classifiers, fine-grained features, multi-level classifiers, and Darknet19. All these features make v2 better than v1. The Darknet19 feature extractor contains 19 convolutional layers, 5 max-pooling layers, and a softmax layer for the classification of objects that are present in the image.
The YOLOv3 method is the fastest and most accurate object detection method. It accurately classifies the objects by using logistic classifiers compared to the softmax approach used by YOLOv2. This makes us capable of making multi-label classifications. The YOLOv3 also uses Darknet53 as a feature extractor, which has 53 convolutional layers, more than the Darknet19 used by v2, and this makes it more accurate. It also uses a small object detector to detect all the small objects present in the image, which couldn’t be detected by using v1.
Must Read : Step-by-Step Methods To Build Your Own AI System Today
Summary
I hope the above overview of object detection and its implementation using deep learning was helpful to you and made you understand the core idea of object detection and how it is implemented in the real-world using various methods and specifically using deep learning.
Object detection can be used in many areas to reduce human efforts and increase the efficiency of processes in various fields. Object detection, as well as deep learning, are areas that will be blooming in the future and making its presence across numerous fields. There is a lot of scope in these fields and also many opportunities for improvements.
Popular AI and ML Blogs & Free Courses
Courses Offered by upGrad
upGrad has developed comprehensive online training programs on deep learning as well as machine learning in line with industry expectations. The training modules and education approach of upGrad help the students learn quickly and get ready for any assignment.
The main educational programs which upGrad offers are suitable for entry and mid-career level
1. PG Diploma in Machine Learning and AI: It is suitable for working professionals who would like to learn machine learning right from scratch and shift their career roles to Machine Learning Engineer, Data Scientist, AI Architect, Business Analyst or Product Analyst.
2. Master of Science in Machine Learning and AI: It is a comprehensive 18-month program that helps individuals to get a masters in this field and get knowledge of this field along with having hands-on practical experience on a large number of projects.
3. PG Certification in Machine Learning and Deep Learning: This course is focused on machine and deep learning. With this course, students can apply for positions like Machine Learning Engineer and Data Scientist.
4. PG Certification in Machine Learning and NLP: It is a well-structured course for learning machine learning and natural language processing. The job opportunities for the learners are Data Scientist and Data Analyst.
upGrad has developed the curriculum of these programs for machine learning and deep learning in consideration of the machine learning principles, aspects, and major components of machine learning and the job opportunities so that skills are developed right from scratch. After completing the program from upGrad, tremendous machine learning career opportunities await you in diverse industries and various roles.
Enrol for the Machine Learning Course from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.
The Bottom Line
Students can take any of the paths mentioned above to build their careers in machine learning and deep learning. upGrad’s placement support helps students to enhance their job prospects through exciting career opportunities on the job portal, career fairs and Hackathons as well as placement support. The future of deep learning is brighter with increasing demand and growth prospects, and also many individuals wanting to make a career in this field. Take up any of these courses and much more offered by upGrad to dive into machine learning career opportunities awaiting you.
Frequently Asked Questions (FAQs)
1. What are the deep learning algorithms used in object detection?
Object detection is a computer vision task that refers to the process of locating and identifying multiple objects in an image. Deep learning algorithms like YOLO, SSD and R-CNN detect objects on an image using deep convolutional neural networks, a kind of artificial neural network inspired by the visual cortex. Deep convolutional neural networks are the most popular class of deep learning algorithms for object detection. The deep convolutional networks are trained on large datasets. These networks can detect objects with much more efficiency and accuracy than previous methods.
2. Which algorithm is best for object detection?
There are many algorithms for object detection, ranging from simple boxes to complex Deep Networks. The industry standard right now is YOLO, which is short for You Only Look Once. YOLO is a simple and easy to implement neural network that classifies objects with relatively high accuracy. In a nutshell, a neural network is a system of interconnected layers that simulate how neurons in the brain communicate. Each layer has its own set of parameters, which are tweaked according to the data provided. The data that comes out of each layer is fed into the next layer, and so on, until we get a final prediction as the output.
3. What are the difficulties you have faced in object identification?
There are many difficulties which we face while object identification. One of the difficulties is when the object is a picture of a scene. In such cases we need to know the position of the camera in the past and we should estimate the position of the moving object. Due to the changes with time, we may get a completely different image and it can't be matched. One way to solve this issue is to take the help of motion estimation. Another one is to do the re-computation with time difference.
RELATED PROGRAMS