- Blog Categories
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Gini Index for Decision Trees
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Brand Manager Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Search Engine Optimization
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
Want to Be a Data Analyst? Here are Top Skills & Tools to Master
Updated on 18 November, 2024
5.66K+ views
• 8 min read
Crunching numbers and spotting patterns has become the gold standard in the IT industry. Data analyst jobs are in demand, LinkedIn’s Most Promising Jobs of 2017 has listed Data Engineer at number 9 and Analytics Manager making it number 18.
Another Glassdoor study of the 50 Best Jobs in America puts Data Scientist at the top spot with Data Engineer coming in at a close number 3 and Analytics Manager at an enviable number 5. However, taking the top slot isn’t easy. You need an armory of data analytics skills if you want to clock year-on-year growth and a fat pay package with this major career advancement.
While the internet is abuzz with free resources on how to master the fundamentals of data science, sentiment analysis, and fast track machine learning among others. Analytics India Magazine and UpGrad help you cut through the claptrap by listing down 5 basic skills needed to become a data analyst.
Put yourself in the lead for Data Analyst jobs with these skills
Let’s start with a few basics:
Educational Background
Not everybody can become a data analyst. You need to have a natural leaning toward math and statistics. All those years of learning calculus and probability will come in handy. A degree in Computer Science is always an added advantage.
Statistics: To become a full-fledged data analyst, a thorough grounding in statistics is essential. Being good at statistics will help you understand algorithms deeply and also when they should be used.
Brush up on applied statistics, linear algebra, real analysis, graph theory and numerical analysis. Linear algebra comes into play with regression, understanding data structures and preparing data for prescriptive and predictive data modeling.
Our learners also read: Free Online Python Course for Beginners
Programming Skills
1) Statistical Language:
SAS vs R vs Python: It’s a question that needles most data nerds when it comes to picking up the analytical tool of choice. While SAS (expensive) and Python (billed for low-scale data processing) are easy to learn, R (low-level programming language) wins hands down thanks to its advanced computing capability, better graphical capabilities and advanced tools.
Since R is open sourced, features and packages get added quickly as opposed to SAS. Another reason why R is thriving is it has a huge ecosystem backing it up that keep it up-to-speed with rich features.
Pro Tip: R’s commercial appeal has made it a household (read: IT/tech focused companies’) name and while SAS is still widely used by enterprises, this statistical language is catching on. But R has a steep learning curve.
2) Querying Language:
SQL: One of the oldest querying languages, SQL is a general-purpose database language which is used for analytical as well as transactional queries. SQL is mainly used in day-to-day operations and cannot support petabytes of data. Programs like Unity tutorial can help you familiarize yourself with PHP & MySQL more in-depth.
Hive: This Hadoop query language was invented by Facebook’s Data Infrastructure team. Right from the day that Hive was open sourced in 2008, it has become the popular choice for business analysts. The open source data warehousing solution that uses an SQL type language called HQL can support terabytes and petabytes of data as opposed to SQL. The downside is it only supports structured data.
PIG: One of the biggest advantages for Pig is that it can process both structured and unstructured data and works over MapReduce. It is the go-to language for most programmers who tend to write scripts. What you need to do is learn Pig Latin that helps tackle structured/unstructured and semi-structured with more ease as compared to Hive. Here’s a bit of history trivia – Pig was created in Yahoo in 2006 to perform MapReduce jobs.
Pro Tip: Knowledge of SQL will help in picking up Pig and Hive.
3) Scripting Language:
MATLAB: It’s a language used for data mining. Some might argue that its popularity has declined. It wouldn’t hurt to put it in your arsenal. Remember, MATLAB has been around for a long, long time, invented in the late ’70s as a tool for data analysis.
Python: This is hands down one of the most popular scripting languages and its popularity stems from current stack. The core libraries NumPy, SciPy, Pandas, matplotlib, IPython. Perfect for modeling and analysis. It has one drawback though – scalability for large datasets.
Pro Tip: Python has a strong community and is best used for scraping websites and data engineering. Guess what? It’s so easy that people with a non-programming background can also master it!
Machine Learning
Machine Learning (ML) is not just a buzz word. It is finding a lot of utility across domains and gaining immense traction, and therefore turning out to be an essential skill that data professionals need to have. In ML, regression, classification and segmentation are the broad learning areas that analysts should focus on.
Data Visualization
You have all this data; now how do you bring it to life? Your job, as a data analyst, would be to make evocative reports, find trends and communicate these findings to the top brass. Data visualization tools to master are Tableau, Microsoft Power BI, Oracle Visual Analyser, SAS Visual Analytics. If you like R, you can use the ggplot package to create highly interactive charts and graphs.
Pro Tip: Don’t just learn the tools. Try understanding the motive of visually encoding data as well.
Understanding Databases
Essentially used to better understand the customer, database analysis extends from basic analysis to complex data mining through various tools – Geographic Information System (GIS) or text analysis. The basic steps for analyzing databases are to extract, clean, merge, analyse and implement.
Checkout: Data Analyst Salary in India
upGrad’s Exclusive Data Science Webinar for you –
How upGrad helps for your Data Science Career?
Data Munging or Data Wrangling
Before you start extracting insights from reams of data, data must be cleaned. In plain speak, somebody needs to do the job of a janitor, which means, manually cleaning data and processing it in a unified format before it is analyzed. So far, excel has been used for cleaning and enriching data, but Stanford debuted an interactive tool, a work-in-progress called Wrangler.
Pro Tip: Give Wrangler a try and see how you can manipulate real-world data and export it for use in Tableau or R
A data analyst does not requires advanced skills like data scientists. However, since these roles are multi-faceted and learning is a continuous process, with additional resources you can become a junior data scientist as well.
Essentially, mathematics and statistics (32%), computer science (19%), and engineering (16%) are predominantly the most important fields of study for a data scientist. Data analysts are generally expected to be proficient with languages such as SAS and/or R.
It’s advisable for people with a computer science background to know Python, Hadoop, and SQL coding. Additionally, working with unstructured data is an integral part of the data analyst job. It’s a good idea to be accustomed to unstructured databases. Moreover, a data analyst must imbibe qualities such as developing a business acumen or good communication/presentation skills, as these skills will help stay ahead of the game.
Learn data science courses online from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career.
This post was originally published in Analytics India Magazine.
Explore our Popular Data Science Courses
Top Essential Data Science Skills to Learn
Read our popular Data Science Articles
Frequently Asked Questions (FAQs)
1. Which is the preferred coding language for Data Analytics?
Python is the world's most used data analytics programming language. It's an open-source, user-friendly programming language that's been around since the year. It is also one of the most convenient programming languages available because of its simple syntax and absence of complication, which helps in focusing on the natural language. The scripts of Python may be created and executed considerably faster than other programming languages due to their ease of understanding and use.
2. What are the mathematical topics required for Data Analytics?
Knowledge of fundamental arithmetic is very crucial for beginners to data science from other fields. You'll need a strong understanding of mathematics as well as the ability to reliably combine figures to create new measurements. To meet typical commercial demands like compound interest or depreciation, a data analyst should also be familiar with statistics and mathematics. Statistics and probability, algebra (basic and linear), calculus, and discrete mathematics are the four fundamental math disciplines for a data analyst.
3. Is learning Data Analytics worth it?
Data analytics may necessitate a prior understanding of a few areas, such as programming languages like R, Python, and others and mathematics and statistical concepts. These topics, however, can be studied with Data Analytics. You can acquire a wide range of employment opportunities by mastering data analytics, including Business Analysts, Data Scientists, and Data Analysts. These jobs also pay well and offer more significant opportunities for advancement. These occupations deal with rearranging data such that both people and robots can understand it.