Explore Courses
Liverpool Business SchoolLiverpool Business SchoolMBA by Liverpool Business School
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA (Master of Business Administration)
  • 15 Months
Popular
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Business Administration (MBA)
  • 12 Months
New
Birla Institute of Management Technology Birla Institute of Management Technology Post Graduate Diploma in Management (BIMTECH)
  • 24 Months
Liverpool John Moores UniversityLiverpool John Moores UniversityMS in Data Science
  • 18 Months
Popular
IIIT BangaloreIIIT BangalorePost Graduate Programme in Data Science & AI (Executive)
  • 12 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
upGradupGradData Science Bootcamp with AI
  • 6 Months
New
University of MarylandIIIT BangalorePost Graduate Certificate in Data Science & AI (Executive)
  • 8-8.5 Months
upGradupGradData Science Bootcamp with AI
  • 6 months
Popular
upGrad KnowledgeHutupGrad KnowledgeHutData Engineer Bootcamp
  • Self-Paced
upGradupGradCertificate Course in Business Analytics & Consulting in association with PwC India
  • 06 Months
OP Jindal Global UniversityOP Jindal Global UniversityMaster of Design in User Experience Design
  • 12 Months
Popular
WoolfWoolfMaster of Science in Computer Science
  • 18 Months
New
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Rushford, GenevaRushford Business SchoolDBA Doctorate in Technology (Computer Science)
  • 36 Months
IIIT BangaloreIIIT BangaloreCloud Computing and DevOps Program (Executive)
  • 8 Months
New
upGrad KnowledgeHutupGrad KnowledgeHutAWS Solutions Architect Certification
  • 32 Hours
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Popular
upGradupGradUI/UX Bootcamp
  • 3 Months
upGradupGradCloud Computing Bootcamp
  • 7.5 Months
Golden Gate University Golden Gate University Doctor of Business Administration in Digital Leadership
  • 36 Months
New
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Golden Gate University Golden Gate University Doctor of Business Administration (DBA)
  • 36 Months
Bestseller
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDoctorate of Business Administration (DBA)
  • 36 Months
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (DBA)
  • 36 Months
KnowledgeHut upGradKnowledgeHut upGradSAFe® 6.0 Certified ScrumMaster (SSM) Training
  • Self-Paced
KnowledgeHut upGradKnowledgeHut upGradPMP® certification
  • Self-Paced
IIM KozhikodeIIM KozhikodeProfessional Certification in HR Management and Analytics
  • 6 Months
Bestseller
Duke CEDuke CEPost Graduate Certificate in Product Management
  • 4-8 Months
Bestseller
upGrad KnowledgeHutupGrad KnowledgeHutLeading SAFe® 6.0 Certification
  • 16 Hours
Popular
upGrad KnowledgeHutupGrad KnowledgeHutCertified ScrumMaster®(CSM) Training
  • 16 Hours
Bestseller
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 4 Months
upGrad KnowledgeHutupGrad KnowledgeHutSAFe® 6.0 POPM Certification
  • 16 Hours
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Science in Artificial Intelligence and Data Science
  • 12 Months
Bestseller
Liverpool John Moores University Liverpool John Moores University MS in Machine Learning & AI
  • 18 Months
Popular
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
IIIT BangaloreIIIT BangaloreExecutive Post Graduate Programme in Machine Learning & AI
  • 13 Months
Bestseller
IIITBIIITBExecutive Program in Generative AI for Leaders
  • 4 Months
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
IIIT BangaloreIIIT BangalorePost Graduate Certificate in Machine Learning & Deep Learning (Executive)
  • 8 Months
Bestseller
Jindal Global UniversityJindal Global UniversityMaster of Design in User Experience
  • 12 Months
New
Liverpool Business SchoolLiverpool Business SchoolMBA with Marketing Concentration
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA with Marketing Concentration
  • 15 Months
Popular
MICAMICAAdvanced Certificate in Digital Marketing and Communication
  • 6 Months
Bestseller
MICAMICAAdvanced Certificate in Brand Communication Management
  • 5 Months
Popular
upGradupGradDigital Marketing Accelerator Program
  • 05 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Corporate & Financial Law
  • 12 Months
Bestseller
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in AI and Emerging Technologies (Blended Learning Program)
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Intellectual Property & Technology Law
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Dispute Resolution
  • 12 Months
upGradupGradContract Law Certificate Program
  • Self paced
New
ESGCI, ParisESGCI, ParisDoctorate of Business Administration (DBA) from ESGCI, Paris
  • 36 Months
Golden Gate University Golden Gate University Doctor of Business Administration From Golden Gate University, San Francisco
  • 36 Months
Rushford Business SchoolRushford Business SchoolDoctor of Business Administration from Rushford Business School, Switzerland)
  • 36 Months
Edgewood CollegeEdgewood CollegeDoctorate of Business Administration from Edgewood College
  • 24 Months
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with Concentration in Generative AI
  • 36 Months
Golden Gate University Golden Gate University DBA in Digital Leadership from Golden Gate University, San Francisco
  • 36 Months
Liverpool Business SchoolLiverpool Business SchoolMBA by Liverpool Business School
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA (Master of Business Administration)
  • 15 Months
Popular
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Business Administration (MBA)
  • 12 Months
New
Deakin Business School and Institute of Management Technology, GhaziabadDeakin Business School and IMT, GhaziabadMBA (Master of Business Administration)
  • 12 Months
Liverpool John Moores UniversityLiverpool John Moores UniversityMS in Data Science
  • 18 Months
Bestseller
O.P.Jindal Global UniversityO.P.Jindal Global UniversityMaster of Science in Artificial Intelligence and Data Science
  • 12 Months
Bestseller
IIIT BangaloreIIIT BangalorePost Graduate Programme in Data Science (Executive)
  • 12 Months
Bestseller
O.P.Jindal Global UniversityO.P.Jindal Global UniversityO.P.Jindal Global University
  • 12 Months
WoolfWoolfMaster of Science in Computer Science
  • 18 Months
New
Liverpool John Moores University Liverpool John Moores University MS in Machine Learning & AI
  • 18 Months
Popular
Golden Gate UniversityGolden Gate UniversityDBA in Emerging Technologies with concentration in Generative AI
  • 3 Years
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (AI/ML)
  • 36 Months
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDBA Specialisation in AI & ML
  • 36 Months
Golden Gate University Golden Gate University Doctor of Business Administration (DBA)
  • 36 Months
Bestseller
Ecole Supérieure de Gestion et Commerce International ParisEcole Supérieure de Gestion et Commerce International ParisDoctorate of Business Administration (DBA)
  • 36 Months
Rushford, GenevaRushford Business SchoolDoctorate of Business Administration (DBA)
  • 36 Months
Liverpool Business SchoolLiverpool Business SchoolMBA with Marketing Concentration
  • 18 Months
Bestseller
Golden Gate UniversityGolden Gate UniversityMBA with Marketing Concentration
  • 15 Months
Popular
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Corporate & Financial Law
  • 12 Months
Bestseller
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Intellectual Property & Technology Law
  • 12 Months
Jindal Global Law SchoolJindal Global Law SchoolLL.M. in Dispute Resolution
  • 12 Months
IIITBIIITBExecutive Program in Generative AI for Leaders
  • 4 Months
New
IIIT BangaloreIIIT BangaloreExecutive Post Graduate Programme in Machine Learning & AI
  • 13 Months
Bestseller
upGradupGradData Science Bootcamp with AI
  • 6 Months
New
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
KnowledgeHut upGradKnowledgeHut upGradSAFe® 6.0 Certified ScrumMaster (SSM) Training
  • Self-Paced
upGrad KnowledgeHutupGrad KnowledgeHutCertified ScrumMaster®(CSM) Training
  • 16 Hours
upGrad KnowledgeHutupGrad KnowledgeHutLeading SAFe® 6.0 Certification
  • 16 Hours
KnowledgeHut upGradKnowledgeHut upGradPMP® certification
  • Self-Paced
upGrad KnowledgeHutupGrad KnowledgeHutAWS Solutions Architect Certification
  • 32 Hours
upGrad KnowledgeHutupGrad KnowledgeHutAzure Administrator Certification (AZ-104)
  • 24 Hours
KnowledgeHut upGradKnowledgeHut upGradAWS Cloud Practioner Essentials Certification
  • 1 Week
KnowledgeHut upGradKnowledgeHut upGradAzure Data Engineering Training (DP-203)
  • 1 Week
MICAMICAAdvanced Certificate in Digital Marketing and Communication
  • 6 Months
Bestseller
MICAMICAAdvanced Certificate in Brand Communication Management
  • 5 Months
Popular
IIM KozhikodeIIM KozhikodeProfessional Certification in HR Management and Analytics
  • 6 Months
Bestseller
Duke CEDuke CEPost Graduate Certificate in Product Management
  • 4-8 Months
Bestseller
Loyola Institute of Business Administration (LIBA)Loyola Institute of Business Administration (LIBA)Executive PG Programme in Human Resource Management
  • 11 Months
Popular
Goa Institute of ManagementGoa Institute of ManagementExecutive PG Program in Healthcare Management
  • 11 Months
IMT GhaziabadIMT GhaziabadAdvanced General Management Program
  • 11 Months
Golden Gate UniversityGolden Gate UniversityProfessional Certificate in Global Business Management
  • 6-8 Months
upGradupGradContract Law Certificate Program
  • Self paced
New
IU, GermanyIU, GermanyMaster of Business Administration (90 ECTS)
  • 18 Months
Bestseller
IU, GermanyIU, GermanyMaster in International Management (120 ECTS)
  • 24 Months
Popular
IU, GermanyIU, GermanyB.Sc. Computer Science (180 ECTS)
  • 36 Months
Clark UniversityClark UniversityMaster of Business Administration
  • 23 Months
New
Golden Gate UniversityGolden Gate UniversityMaster of Business Administration
  • 20 Months
Clark University, USClark University, USMS in Project Management
  • 20 Months
New
Edgewood CollegeEdgewood CollegeMaster of Business Administration
  • 23 Months
The American Business SchoolThe American Business SchoolMBA with specialization
  • 23 Months
New
Aivancity ParisAivancity ParisMSc Artificial Intelligence Engineering
  • 24 Months
Aivancity ParisAivancity ParisMSc Data Engineering
  • 24 Months
The American Business SchoolThe American Business SchoolMBA with specialization
  • 23 Months
New
Aivancity ParisAivancity ParisMSc Artificial Intelligence Engineering
  • 24 Months
Aivancity ParisAivancity ParisMSc Data Engineering
  • 24 Months
upGradupGradData Science Bootcamp with AI
  • 6 Months
Popular
upGrad KnowledgeHutupGrad KnowledgeHutData Engineer Bootcamp
  • Self-Paced
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Bestseller
upGradupGradUI/UX Bootcamp
  • 3 Months
upGradupGradCloud Computing Bootcamp
  • 7.5 Months
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 5 Months
upGrad KnowledgeHutupGrad KnowledgeHutSAFe® 6.0 POPM Certification
  • 16 Hours
upGradupGradDigital Marketing Accelerator Program
  • 05 Months
upGradupGradAdvanced Certificate Program in GenerativeAI
  • 4 Months
New
upGradupGradData Science Bootcamp with AI
  • 6 Months
Popular
upGradupGradFull Stack Software Development Bootcamp
  • 6 Months
Bestseller
upGradupGradUI/UX Bootcamp
  • 3 Months
PwCupGrad CampusCertification Program in Financial Modelling & Analysis in association with PwC India
  • 4 Months
upGradupGradCertificate Course in Business Analytics & Consulting in association with PwC India
  • 06 Months
upGradupGradDigital Marketing Accelerator Program
  • 05 Months

What Is Blockchain? How to Create Network,Code & It’s Architecture

Updated on 24 November, 2022

7.85K+ views
13 min read

Just like Artificial Intelligence and Machine Learning, Blockchain is rapidly growing to become a mainstream technology in the industry today. Blockchain tech is no longer limited to the BFSI sector, and it is making its presence known in other domains, including healthcare, governance, retail, and logistics, to name a few. However, although Blockchain has made its way in the common vocabulary, not many are aware of the Blockchain architecture and how it functions.

Check out our free courses to get an edge over the competition.

In this post, we’ll talk about everything you need to know about Blockchain and Blockchain architecture. First, let’s start with the basics.

Learn Online Software Programs from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs or Masters Programs to fast-track your career.

What is Blockchain?

A Blockchain is a decentralized and distributed ledger that was designed way back in 1991 to store and record financial transactions. However, it is capable of storing anything that has value. Essentially, Blockchain is an interconnected web or network of computers linked together instead of being connected to one central server. All the machines (or nodes) within this network can define and agree upon a shared state of data while adhering to some unanimously agreed upon constraints – although the system consists of multiple nodes, no single node can alter the data without the consensus of the entire network.

Check out upGrad’s Full Stack Development Bootcamp (JS/MERN)

Since Blockchain is a distributed network, each node within the network maintains, approves, as well as updates the new entries. Each member cross-validates the records and procedures, thereby making the Blockchain network valid and secure. In this way, even if the members do not trust each other, they can establish unison on common grounds.

As the name suggests, a Blockchain consists of blocks containing specific information that is shared by all the connected machines within the peer-to-peer (P2P) network. These blocks are data structures that bundle sets of transactions and distribute the same to all the nodes in the P2P network. Each block is secured through a highly specialized cryptographic key. Furthermore, each block contains a Block Header – the metadata – that verifies the validity of the block. The block metadata of a block is made of the following six components:

  • Version – The current version of the block structure.
  • Previous block header hash – The reference to this block’s Parent Block.
  • Merkle root hash – It is a cryptographic hash of all the transactions recorded in the block.
  • Timestamp – The time of the creation of the block. 
  • nBits – The encoded form of the target threshold in the block header.
  • Nonce (number used once) – A random value that the block’s creator can manipulate as and how they desire.

Check out upGrad’s Java Bootcamp. 

Image Source

While these six components form the Block Header, the remaining part of a block contains the transactions included by the miner while creating the block. The users in a network create such transactions and submit them to the network to be included in a block. As these transactions continue to grow, the size of the Blockchain also continues to expand. 

The decentralized and distributed features of the Blockchain make it transparent and accountable (every user in the network is accountable for any alterations in the chain). And the fact that everything recorded in a Blockchain is secured through cryptography makes it secure and reliable. These features of Blockchain have made it attractive to enthusiasts across all industries who are readily investing in Blockchain architecture to develop Blockchain-based applications.

Blockchain Architecture

Now, that we’ve cleared the basics of Blockchain architecture, we’ll dig deeper into it. Blockchain architecture consists of two core data structures:

  • Pointers – These are variables that record information about the location of another variable. In other words, they point out the position of another variable.
  • Linked lists – These are a sequence of blocks wherein each block has a unique data and is linked to the block following it via a pointer.

Image Source

Going by this logic, the first block, a.k.a., the Genesis Block, in the chain does not contain a pointer (it is the commencing block). Similarly, the final block in the chain will have a null pointer (having no value).

Characteristics of Blockchain Architecture

Blockchain architecture has a few unique characteristics, including:

  • Cryptography – Each transaction recorded in a Blockchain is secured through complex cryptographic computations validated by all the stakeholders involved.
  • Decentralization – Each member of the Blockchain network has access to the complete database.
  • Provenance – The origin of every transaction contained in the Blockchain ledger can be tracked and monitored.
  • Immutability – Once a transaction is recorded in a Blockchain, it cannot be deleted. Only through the consent of all parties can the record be altered.
  • Anonymity – Each user in the network has an address generated via the system itself – they do not have an identity. This way, the users can maintain their anonymity (particularly required in a public blockchain structure).
  • Transparency – Since each member of the Blockchain can access the system and monitor the operations, there’s complete transparency in the process. Altering one block would mean that the whole chain has to be changed, and this is highly unlikely to happen (it requires enormous computing power to overwrite the blockchain network). 

Types of Blockchain Architecture

There are primarily three types of Blockchain Architecture:

  • Public Blockchain Architecture

In a public blockchain architecture, access to both data and the system is available to any individual who is willing to participate in the Blockchain network. Bitcoin, Ethereum, and Litecoin are some excellent examples of public blockchain systems.

  • Private Blockchain Architecture

Unlike the public blockchain architecture, a private blockchain architecture can only be controlled by a group of authorized users belonging to a specific organization or those who have an invitation to participate in the network.

  • Consortium Blockchain Architecture

The consortium blockchain architecture is comprised of a group of organizations and the procedures for the system are set and controlled by the select group of assigned users.

A public Blockchain is the pure decentralized Blockchain since it is open-ended and can be accessed by anyone willing to take part in an agreement or the system. All records are visible to every participating user in the network. On the contrary, a private Blockchain depicts the behavior of a more centralized system since it is administered and controlled by a select group of users who enjoy greater privacy.  

Core Components of Blockchain Architecture

Six core components make up the Blockchain Architecture. They are:

  • Node – It refers to a user/computer in the blockchain architecture. Each node holds an independent copy of the entire blockchain ledger.
  • Transaction – It refers to the smallest building block of a blockchain system, that is, the records and information stored in the block. 
  • Block – It is a data structure that stores/records a set of transactions that is then shared (distributed) among all nodes in the network.
  • Chain – It is a term for a sequence of blocks arranged in a specific order.
  • Miners – This is a term used for the specific nodes that verify the blocks before adding them to the blockchain structure.
  • Consensus algorithm – It is a collection of rules and procedures that should be strictly adhered to for performing blockchain operations. 

The blockchain architecture diagram given below further explains how the system works as a distributed digital wallet:

Image Source

Earlier, we had discussed the components of the Block Metadata. Now, we’ll take a look at the elements of a block in a Blockchain. Each block consists of:

  • Data – A block’s data largely depends on the kind of blockchain architecture it falls under. For instance, for Bitcoin or Litecoin, the data contained in the blocks will contain information of the sender, receiver, and the number of coins.
  • The hash of the block – A hash is a unique key, almost like a fingerprint. It is a complex combination of digits and letters. Each block hash is created by using a particular cryptographic hash algorithm – SHA256. Immediately a block is created, a hash key is generated. Any changes made to the block will automatically alter its hash as well. In other words, the block hash helps to detect any modifications made to a block.
  • The hash from the previous block – Apart from containing its unique hash key, a block must also contain the hash of the block immediately before it. It is this feature that helps create a connected chain in the blockchain architecture and is the main element behind its security.

Since all the validated blocks in a Blockchain are derived from the Genesis Block, any attempt to corrupt or violate a single block will create a chain reaction, promoting all the blocks to change. If this happens, all the blocks will carry the incorrect information forward, thereby rendering the whole Blockchain as invalid. However, changes can be made to the Blockchain architecture via the Consensus Algorithm.

What is a Consensus Algorithm?

 The Consensus Algorithm refers to the mechanism or protocol that ensures that the local copy of the Blockchain ledger possessed by individual members are consistent with each other and are updated to the latest version. This helps ensure uniformity and synchronicity within the blockchain architecture. Here are the three most widely used Consensus Algorithms:

Proof-of-Work (POW)

The POW requires you to solve a complex computation puzzle to create and add new blocks in the Blockchain network. So, you have to guess the particular string that produces a 256-bit hash, as propagated by the SHA256 hashing algorithm. Since one needs to make millions of guesses to verify the hash, it gets the name “proof-of-work.” 

Proof of Stake (POS)

The POS protocol considers all the nodes in the system as validators who can validate the transactions to earn transaction fees. POS randomly selects these nodes to validate the blocks – the probability behind the random selection of a node depends on the amount of the stake it node has.

Simplified Byzantine Fault Tolerance (SBFT)

In this approach, there’s a single node (validator) that bundles the proposed transactions to create a new block in the Blockchain. The validator is termed as the Party. Here, when the minimum number of other nodes in the network rectifies the newly created block, a consensus is achieved.

How to create a Blockchain Architecture?

To build a Blockchain Architecture, first, you must take care of two things:

  • Blockchain network – It pertains to the Blockchain application’s infrastructure placed within a particular environment either in one or a few organizations.
  • Blockchain code – It refers to the tasks and goals the Blockchain application aims to perform.

Today, developing a Blockchain Architecture is easier, thanks to the widespread availability of open-source solutions. Hyperledger by Linux Foundation is the most popular platform used to build private blockchain architecture. Apart from Hyperledger, Ethereum and Corda are also excellent tools for developing Blockchain Architecture.

Image Source

How to create a Blockchain Network?

A Blockchain network is formed when one or a group of organizations decide on investing in a Blockchain solution. This network could either be considered as individual organizations with their staff members or as a whole from the technical infrastructure viewpoint of all the organizations combined. 

Usually, multiple parties are involved in a Blockchain network. The aim of Blockchain applications/solutions is to organize these parties by forming a transparent peer-to-peer system wherein each member can track and monitor all the activities in real-time. This feature helps eliminate all the risks associated with the transaction or business. 

In a Blockchain network, each participating organization possesses an individual copy of the ledger that is synced with unique protocols and technical layers of the Blockchain network (peers). The Ordering Service can be shared among all parties controlling the transactions and their order in the Blockchain network. Again, the Membership Services Provider (MSP) feature allows access to particular users inside the network to maintain the privacy and security of the network. Finally, all the transactions contained in the network are recorded in a general ledger.

How to create the Blockchain Code?

Once the Blockchain network is in place, the parties involved must reach a consensus on the type of business transactions that should take place within the Blockchain Architecture. This consensus is achieved in the form of a legal agreement, known as Smart Contracts. This is the Blockchain Code, a.k.a., Chaincode. Just like any legal document, Smart Contracts contain the information of the participants, the assets, and the transactions that are to occur. Each transaction requires a Transactional Processor Function that outlines the processes that will happen once the transaction is executed. 

The Benefits of Blockchain Architecture

By setting up a Blockchain Architecture in place, organizations can reap the following benefits:

  • Cost reduction

Companies usually spend substantial amounts of money on maintaining centralized databases that are susceptible to cyber-attacks. With a Blockchain structure in place, one thing is sure organizations need not worry about security and system violations. Hence, they need not spend additional money on fortifying system security.

  • Increased transparency

In a Blockchain structure, members can check the history of any transaction at any time. Thus, unlike a centralized database, this an ever-growing archive wherein members enjoy complete transparency. 

  • Data security

Once you enter information (data) into the Blockchain structure, it is almost impossible to tamper or corrupt it. Any alteration made to the Blockchain must be validated by all the members in the network, thereby making the process a lengthy and time-consuming one. Naturally, the data security quotient is very high in Blockchain Architecture.

So, that’s Blockchain Architecture in a nutshell! 

We hope this helps you understand this emerging tech a little better.

There is a rise in careers in blockchain technology and blockchain has tremendously changed the very face of the technology industry forever.  If you’re interested to become a blockchain developer and build smart contracts and chain codes, checkout IIIT-B & upGrad’s Advanced certificate program in blockchain technology.

Frequently Asked Questions (FAQs)

1. What are some of the challenges of using a blockchain architecture?

Developing a blockchain architecture is a difficult task that entails overcoming a number of obstacles. The most challenging task is ensuring that the blockchain is safe and untampered. This necessitates the creation of a robust security system capable of defending the blockchain against malicious attacks. Another significant problem is ensuring that the blockchain is scalable and capable of processing many transactions. This necessitates the creation of a system that can manage a huge number of transactions without causing the network to slow down. The third major problem is to create a governance scheme that guarantees the blockchain operates efficiently and fairly. This necessitates the creation of a mechanism for administering the blockchain and its users. The final task is to create a system for paying those who contribute to the blockchain. This necessitates the establishment of a method for paying people for their services.

2. What happens when the blockchain is too large to support the network infrastructure?

The network will fail, and the blockchain will become unusable if the blockchain becomes too large to be supported by network infrastructure. Each block in the blockchain has different transactions. It gets more difficult for network nodes to keep track of all trades as the blockchain grows. The nodes will be unable to keep up if the blockchain grows too huge, and the network will collapse. The blockchain will become unusable as a result, and no transactions would be possible.

3. What are the implications of blockchain technology for trust?

The implications of blockchain technology for trust are significant. Blockchain technology has the potential to create trust where none previously existed or to improve trust where it already exists. For example, blockchain technology could create secure, transparent, and tamper-proof voting systems, increasing the trustworthiness of elections. Furthermore, blockchain technology could make fast, clear, and tamper-proof supply chains, increasing the reliability of the products we buy.

RELATED PROGRAMS