What Is Ensemble Learning Algorithms in Machine Learning?
Updated on Feb 17, 2025 | 8 min read | 5.9k views
Share:
For working professionals
For fresh graduates
More
Updated on Feb 17, 2025 | 8 min read | 5.9k views
Share:
Table of Contents
This guide will give you a thorough understanding of ensemble learning, ensemble methods in machine learning, ensemble algorithm, as well as important ensemble techniques, like boosting and bagging if you are a beginner who wants to understand in detail what an ensemble is or you want to brush up on your knowledge about variance and bias. This article’s goals are to present the idea of ensemble learning in machine language and explain the techniques that employ it. Let us first begin this guide with a basic question: what is ensemble learning in machine learning?
By mixing the predictions from various models, ensemble learning is a broad meta-approach to machine learning that aims to improve predictive performance. There are three techniques that rule the field of ensemble learning, even if there are an apparently infinite number of ensembles you can create for your predictive modeling issue. So much so that it is a topic of study that has given rise to numerous more specialized approaches rather than algorithms.
Bagging, stacking, and boosting are the three primary classes of ensemble learning techniques, and it’s critical to understand each one thoroughly and take it into account in any predictive modeling project.
But before building on math and code, you need a careful introduction to these strategies and the fundamental concepts underlying each technique.
To have the right approach for ensemble machine learning, you must be aware of:
To learn more about these sorts of techniques, learn Master of Science in Machine Learning & AI
Here is a collection of ensemble techniques, starting with the most fundamental techniques and progressing to the most sophisticated ones.
Simple Ensemble Methods
In statistical parlance, modes are the numbers that appear frequently in a dataset. To predict results for every data point, the experts of machine learning use different models in ensemble techniques. These models are treated as distinct votes by these experts. Therefore, the prediction produced by the majority of models is considered to be the final prediction.
Advanced Ensemble Methods
The main objective of bagging is to reduce the number of errors that occur in decision trees. Here, the goal is to generate random replacement (subsets of the training data) samples of training datasets. Decision trees or other models are then trained using the subsets.
Boosting: “Boosting,” an iterative ensemble method, modifies an observation’s weight in accordance with its most recent classification. In the event that observation is misclassified, “boosting” raises its weight, and vice versa. Boosting algorithms provide superior predictive models by reducing bias mistakes.
Get a deep understanding of these strategies and become a Full Stack developer by pursuing Advanced Certificate Programme in Machine Learning & NLP from IIITB.
The term “ensemble machine learning” describes methods that aggregate the results of at least two different models.
Although there are practically countless ways to accomplish this, the most frequently discussed and used classes of ensemble learning approaches are probably three. Their success in solving a variety of predictive modeling issues is largely responsible for their appeal.
Over the past few years, a wide range of ensemble-based classifiers have been created. However, a lot of these are variations on a small number of well-known algorithms, whose abilities have also been well-examined and generally publicized.
We might refer to these ensemble learning techniques as “standard” because of how frequently they are used.
Each strategy is described by an algorithm, but more importantly, the success of each approach has led to a plethora of extensions and associated techniques. As a result, it is more helpful to think of each as a group of methods or accepted strategies for ensemble learning.
Instead of delving into the details of each technique, it is helpful to briefly describe, compare, and go through each method. It’s also crucial to keep in mind that although these three methods are frequently discussed and used, they do not entirely capture the scope of ensemble learning.
Check out Free Courses at upGrad
The term “bootstrap aggregating” is an acronym for the ensemble approach known as “bagging,” which was one of the first to be suggested.
Subsamples from a dataset are formed for this procedure, and they are referred to as “bootstrap sampling.” Simply said, replacement is used to generate random subsets of a dataset, and as a result, multiple subsets may include the same data point.
Now that these subsets have been handled as separate datasets, several machine learning models will be fitted to them. The predictions from all such models trained on various subsets of the same data are taken into account during test time.
The final forecast is calculated using an aggregation process. Be aware that a concurrent stream of processing takes place in the bagging procedure. The bagging method’s primary goal is to lower the variance of the ensemble predictions.
As a result, the ensemble classifiers that are selected typically have low bias and high variance. Popular ensemble techniques built upon this methodology include:
Similar to the bagging ensemble process for training multiple models, the stacking ensemble method also entails the creation of bootstrapped data subsets.
Here, however, the results of all such models are fed into a meta-classifier, a different classifier that ultimately predicts the samples. The rationale behind utilizing two layers of classifiers is to assess how effectively the training set of data has been learned.
There are also multi-level stacking ensemble techniques that use extra classifier layers between each one. However, for very little performance improvement, such procedures become quite costly computationally.
The bagging mechanism functions very differently from the boosting ensemble mechanism. In this case, the dataset is processed sequentially rather than in parallel. The complete dataset is supplied to the first classifier, and the predictions are examined.
The boosting method’s primary goal is to lessen bias in the ensemble judgment. Other algorithms based on this strategy include Gradient Boosting Machines, Stochastic Gradient Boosting, and Adaptive Boosting.
Get Machine Learning Certification from the World’s top Universities. Earn Masters, Executive PGP, or Advanced Certificate Programs to fast-track your career.
Dietterich in 2002 had a huge hand in demonstrating how ensembles can solve three issues. –
A decision tree’s variance can be decreased by bagging. Let us now understand about random forest in ensemble learning in machine learning.
Random Forest: Bagging has been extended to Random Forest. A random selection of attributes is chosen at each node to calculate the split for each decision tree classifier in the ensemble. Each tree casts a vote during categorization, and the top class is presented.
From the original data set, many equal-sized subsets are made, choosing observations with replacements.
In this blog, we learned how ensemble learning in machine learning uses techniques to enhance model performance. This strategy combines multiple models and takes into account each model’s forecast when making the final prediction.
Ensemble approaches include bagging and boosting. Bagging is a parallel approach that uses bootstrapped aggregation. This means that many models execute simultaneously, and the ultimate output is determined by averaging the outputs generated by each model. Each weak learner in Bagging gets an equal say in the prediction of the end result. Bagging lowers the variability.
Boosting is a sequential strategy where the predictions of the second weak learner are made while the errors of the first weak learner are taken into account. Each iteration involves assigning and adjusting weights. Enhancing lessens bias. Some of the boosting approaches used to enhance the model’s overall prediction are Adaboost, GBM, and LightGBM. Acquire a 360 degree understanding of Machine Learning strategies with Advanced Certificate Programme in Machine Learning & Deep Learning from IITB.
Get Free Consultation
By submitting, I accept the T&C and
Privacy Policy
Top Resources