For working professionals
For fresh graduates
More
Python Tutorials - Elevate You…
1. Introduction to Python
2. Features of Python
3. How to install python in windows
4. How to Install Python on macOS
5. Install Python on Linux
6. Hello World Program in Python
7. Python Variables
8. Global Variable in Python
9. Python Keywords and Identifiers
10. Assert Keyword in Python
11. Comments in Python
12. Escape Sequence in Python
13. Print In Python
14. Python-if-else-statement
15. Python for Loop
16. Nested for loop in Python
17. While Loop in Python
18. Python’s do-while Loop
19. Break in Python
20. Break Pass and Continue Statement in Python
21. Python Try Except
22. Data Types in Python
23. Float in Python
24. String Methods Python
25. List in Python
26. List Methods in Python
27. Tuples in Python
28. Dictionary in Python
29. Set in Python
30. Operators in Python
31. Boolean Operators in Python
32. Arithmetic Operators in Python
33. Assignment Operator in Python
34. Bitwise operators in Python
35. Identity Operator in Python
36. Operator Precedence in Python
37. Functions in Python
38. Lambda and Anonymous Function in Python
39. Range Function in Python
40. len() Function in Python
41. How to Use Lambda Functions in Python?
42. Random Function in Python
43. Python __init__() Function
44. String Split function in Python
45. Round function in Python
46. Find Function in Python
47. How to Call a Function in Python?
48. Python Functions Scope
49. Method Overloading in Python
50. Method Overriding in Python
51. Static Method in Python
52. Python List Index Method
53. Python Modules
54. Math Module in Python
55. Module and Package in Python
56. OS module in Python
57. Python Packages
58. OOPs Concepts in Python
59. Class in Python
60. Abstract Class in Python
61. Object in Python
62. Constructor in Python
63. Inheritance in Python
64. Multiple Inheritance in Python
65. Encapsulation in Python
66. Data Abstraction in Python
67. Opening and closing files in Python
68. How to open JSON file in Python
69. Read CSV Files in Python
70. How to Read a File in Python
71. How to Open a File in Python?
72. Python Write to File
73. JSON Python
74. Python JSON – How to Convert a String to JSON
75. Python JSON Encoding and Decoding
76. Exception Handling in Python
77. Recursion in Python
78. Python Decorators
79. Python Threading
80. Multithreading in Python
81. Multiprocеssing in Python
82. Python Regular Expressions
83. Enumerate() in Python
84. Map in Python
85. Filter in Python
86. Eval in Python
87. Difference Between List, Tuple, Set, and Dictionary in Python
88. List to String in Python
89. Linked List in Python
90. Length of list in Python
91. Python List remove() Method
92. How to Add Elements in a List in Python
93. How to Reverse a List in Python?
94. Difference Between List and Tuple in Python
95. List Slicing in Python
96. Sort in Python
97. Merge Sort in Python
98. Selection Sort in Python
99. Sort Array in Python
100. Sort Dictionary by Value in Python
101. Datetime Python
102. Random Number in Python
103. 2D Array in Python
104. Abs in Python
105. Advantages of Python
106. Anagram Program in Python
107. Append in Python
108. Applications of Python
109. Armstrong Number in Python
110. Assert in Python
111. Binary Search in Python
112. Binary to Decimal in Python
113. Bool in Python
114. Calculator Program in Python
115. chr in Python
116. Control Flow Statements in Python
117. Convert String to Datetime Python
118. Count in python
119. Counter in Python
120. Data Visualization in Python
121. Datetime in Python
122. Extend in Python
123. F-string in Python
124. Fibonacci Series in Python
125. Format in Python
126. GCD of Two Numbers in Python
127. How to Become a Python Developer
128. How to Run Python Program
129. In Which Year Was the Python Language Developed?
130. Indentation in Python
131. Index in Python
132. Interface in Python
133. Is Python Case Sensitive?
134. Isalpha in Python
135. Isinstance() in Python
136. Iterator in Python
137. Join in Python
138. Leap Year Program in Python
139. Lexicographical Order in Python
140. Literals in Python
141. Matplotlib
142. Matrix Multiplication in Python
143. Memory Management in Python
144. Modulus in Python
145. Mutable and Immutable in Python
146. Namespace and Scope in Python
147. OpenCV Python
148. Operator Overloading in Python
149. ord in Python
150. Palindrome in Python
151. Pass in Python
152. Pattern Program in Python
153. Perfect Number in Python
154. Permutation and Combination in Python
155. Prime Number Program in Python
156. Python Arrays
157. Python Automation Projects Ideas
158. Python Frameworks
159. Python Graphical User Interface GUI
160. Python IDE
161. Python input and output
162. Python Installation on Windows
163. Python Object-Oriented Programming
164. Python PIP
165. Python Seaborn
166. Python Slicing
167. type() function in Python
168. Queue in Python
169. Replace in Python
170. Reverse a Number in Python
171. Reverse a string in Python
172. Reverse String in Python
173. Stack in Python
174. scikit-learn
175. Selenium with Python
176. Self in Python
177. Sleep in Python
178. Speech Recognition in Python
179. Split in Python
180. Square Root in Python
181. String Comparison in Python
182. String Formatting in Python
183. String Slicing in Python
184. Strip in Python
185. Subprocess in Python
186. Substring in Python
187. Sum of Digits of a Number in Python
188. Sum of n Natural Numbers in Python
189. Sum of Prime Numbers in Python
190. Switch Case in Python
191. Python Program to Transpose a Matrix
192. Type Casting in Python
193. What are Lists in Python?
194. Ways to Define a Block of Code
195. What is Pygame
196. Why Python is Interpreted Language?
197. XOR in Python
198. Yield in Python
Now Reading
199. Zip in Python
As we journey through Python's extensive toolkit, we encounter the yield keyword—a tool of paramount importance for professionals seeking efficiency and power in their coding repertoire. This tutorial is designed for those who, while familiar with Python's basics, aim to dive deeper and harness the true potential of yield in Python.
In this tutorial, we will delve into the mechanics of yield in Python. Through detailed explanations and real-world examples, you'll grasp the concept, discern its advantages, understand its differences from the return statement, and master its use in advanced Python coding.
When it comes to Python programming, a few tools stand out for their profound impact on code efficiency and versatility. Among them, the yield keyword emerges as a cornerstone when discussing generators. To put it into perspective, when one browses through the Python yield documentation, it is evident that this keyword plays a pivotal role in crafting more responsive and memory-efficient applications.
Python's yield can be envisioned as a unique tool in a coder's arsenal. Think of a traditional function as a machine that produces a product once the entire operation is complete. The yield keyword, on the other hand, allows a function to produce intermediate products, turning the machine into a more dynamic entity. Such a function doesn't just conclude after a single run; it pauses, retains its operational state, and can resume on command. This transformation from a traditional function to this dynamic entity is termed as a "generator".
Delving deeper into its mechanics, when a Python function containing the yield keyword is invoked, it promptly hands back a generator object. This object remains dormant initially. However, once we call the __next__() method on this generator, the function awakens and commences its execution. It continues to run until it stumbles upon the yield keyword, upon which it takes a pause, memorizing its current state, and provides the yielded value. It's akin to a bookmark in a book, enabling readers to resume from where they left off. Thus, in future interactions, by invoking __next__(), the function picks up the pace from its last bookmark, or where it was previously paused.
In Python, especially when one considers scenarios like handling vast datasets or streaming data, the efficiency introduced by yield becomes undeniably essential. It fosters an environment where data is generated on demand, rather than consuming substantial memory by storing colossal datasets. For professionals striving to achieve optimal performance, understanding and adeptly using the yield keyword can be a game-changer.
def number_generator(n):
for i in range(n):
yield i
# Using the generator function
gen = number_generator(5)
for num in gen:
print(num)
In this example, number_generator is a generator function that yields numbers from 0 to n-1. When you iterate over the generator, it yields values one at a time.
def infinite_sequence():
num = 0
while True:
yield num
num += 1
# Using the infinite sequence generator
gen = infinite_sequence()
for i in range(5):
print(next(gen))
Here, infinite_sequence is a generator function that yields an infinite sequence of numbers. You can use next() to retrieve values from the generator, and it will keep generating values indefinitely.
def list_generator(lst):
for item in lst:
yield item
# Using the list generator
my_list = [1, 2, 3, 4, 5]
gen = list_generator(my_list)
for item in gen:
print(item)
In this case, list_generator is a generator function that yields items from a given list one by one.
def boolean_generator():
yield True
yield False
# Using the boolean generator
gen = boolean_generator()
for value in gen:
print(value)
Here, boolean_generator is a generator function that yields True and then False. You can use this to iterate over boolean values.
In the Python programming language, understanding the nuances between various keywords can drastically influence the efficiency and clarity of code. Two such vital keywords, yield and return, often lead to confusion among developers due to their similar nature of handling outputs. However, their operational differences set them apart in various scenarios.
1. Purpose and Functionality: At its core, the return statement marks the termination of a function's execution, immediately handing back a specified value to the caller. Once return is executed, the function’s state and local variables are lost. On the other hand, yield is slightly more complex. Instead of concluding a function, it momentarily halts its execution, preserving its current state. This paused state can then be continued, in subsequent calls, ensuring the function retains its last known state and variables.
2. Memory Consumption: A clear divergence between the two is evident when we analyze memory usage. Functions that utilize the return keyword allocate memory for the entirety of their output. This can be problematic when handling large datasets, as the entire dataset must reside in memory. Conversely, yield showcases its prowess in memory efficiency. By generating and providing values on-the-fly, it ensures minimal memory consumption, particularly beneficial when working with extensive data streams.
3. Execution Flow: With return, once the function has completed its execution and delivered its result, any subsequent calls initiate the function from the beginning. In contrast, yield maintains a continuous flow. After yielding a value, the function can be resumed right where it paused, ensuring a seamless data generation process.
4. Use Cases: Traditional functions employing the return keyword are perfect for scenarios where a complete result set is required instantaneously. It's straightforward and ensures immediate output. However, yield emerges as the victor in situations where data is to be processed or consumed sequentially or piece-by-piece. This is particularly handy in applications like data streaming or lazy evaluation.
5. Multiplicity of Outputs: Functions utilizing return provide a single output value, once the execution is completed. In contrast, those with yield have the potential to yield multiple outputs over time, every time the function encounters the yield statement.
The awareness of these distinctions is pivotal for developers looking to optimize their Python applications. Both return and yield have their unique advantages and best-fit scenarios; thus, judiciously choosing between them can make a considerable difference in performance and resource utilization.
The Python programming landscape is adorned with powerful constructs and features. Among them, the yield keyword stands out as a particularly unique tool. It's imperative for developers to grasp both the benefits and challenges associated with yield to employ it judiciously in their Python applications.
While yield is undeniably powerful, its effective deployment requires a discerning understanding of its strengths and limitations. Balancing its advantages against its challenges ensures optimized, efficient, and streamlined Python code.
The journey into understanding yield in Python offers insights into crafting more efficient and controlled Python applications. While the yield keyword brings undeniable advantages, it's crucial to employ it thoughtfully, aligning with the specific requirements of your project. For those yearning to delve deeper and refine their expertise, upGrad presents a plethora of courses tailored to upskill the modern Python professional.
1. Is there a clear winner in the debate of yield vs return in Python?
While both have their applications, the choice depends on the specific requirements, with yield excelling in memory efficiency and return being straightforward.
2. What role does the Python yield generator play?
A Python yield generator provides a way to produce a series of values over time, making it memory-efficient and dynamic.
3. Can I refer to the official yield Python documentation for more in-depth knowledge?
Absolutely. The Python official documentation provides a thorough exploration of yield and its applications.
4. Is it recommended to use Python yield and return in same function?
While feasible, it can lead to confusion. It's crucial to ensure clarity in the function's purpose.
5. How do I utilize the Python yield send method effectively?
The send method allows values to be passed back into a generator function, offering dynamic input during its execution.
Take our Free Quiz on Python
Answer quick questions and assess your Python knowledge
Author
Talk to our experts. We are available 7 days a week, 9 AM to 12 AM (midnight)
Indian Nationals
1800 210 2020
Foreign Nationals
+918045604032
1.The above statistics depend on various factors and individual results may vary. Past performance is no guarantee of future results.
2.The student assumes full responsibility for all expenses associated with visas, travel, & related costs. upGrad does not provide any a.