- Blog Categories
- Software Development
- Data Science
- AI/ML
- Marketing
- General
- MBA
- Management
- Legal
- Software Development Projects and Ideas
- 12 Computer Science Project Ideas
- 28 Beginner Software Projects
- Top 10 Engineering Project Ideas
- Top 10 Easy Final Year Projects
- Top 10 Mini Projects for Engineers
- 25 Best Django Project Ideas
- Top 20 MERN Stack Project Ideas
- Top 12 Real Time Projects
- Top 6 Major CSE Projects
- 12 Robotics Projects for All Levels
- Java Programming Concepts
- Abstract Class in Java and Methods
- Constructor Overloading in Java
- StringBuffer vs StringBuilder
- Java Identifiers: Syntax & Examples
- Types of Variables in Java Explained
- Composition in Java: Examples
- Append in Java: Implementation
- Loose Coupling vs Tight Coupling
- Integrity Constraints in DBMS
- Different Types of Operators Explained
- Career and Interview Preparation in IT
- Top 14 IT Courses for Jobs
- Top 20 Highest Paying Languages
- 23 Top CS Interview Q&A
- Best IT Jobs without Coding
- Software Engineer Salary in India
- 44 Agile Methodology Interview Q&A
- 10 Software Engineering Challenges
- Top 15 Tech's Daily Life Impact
- 10 Best Backends for React
- Cloud Computing Reference Models
- Web Development and Security
- Find Installed NPM Version
- Install Specific NPM Package Version
- Make API Calls in Angular
- Install Bootstrap in Angular
- Use Axios in React: Guide
- StrictMode in React: Usage
- 75 Cyber Security Research Topics
- Top 7 Languages for Ethical Hacking
- Top 20 Docker Commands
- Advantages of OOP
- Data Science Projects and Applications
- 42 Python Project Ideas for Beginners
- 13 Data Science Project Ideas
- 13 Data Structure Project Ideas
- 12 Real-World Python Applications
- Python Banking Project
- Data Science Course Eligibility
- Association Rule Mining Overview
- Cluster Analysis in Data Mining
- Classification in Data Mining
- KDD Process in Data Mining
- Data Structures and Algorithms
- Binary Tree Types Explained
- Binary Search Algorithm
- Sorting in Data Structure
- Binary Tree in Data Structure
- Binary Tree vs Binary Search Tree
- Recursion in Data Structure
- Data Structure Search Methods: Explained
- Binary Tree Interview Q&A
- Linear vs Binary Search
- Priority Queue Overview
- Python Programming and Tools
- Top 30 Python Pattern Programs
- List vs Tuple
- Python Free Online Course
- Method Overriding in Python
- Top 21 Python Developer Skills
- Reverse a Number in Python
- Switch Case Functions in Python
- Info Retrieval System Overview
- Reverse a Number in Python
- Real-World Python Applications
- Data Science Careers and Comparisons
- Data Analyst Salary in India
- Data Scientist Salary in India
- Free Excel Certification Course
- Actuary Salary in India
- Data Analyst Interview Guide
- Pandas Interview Guide
- Tableau Filters Explained
- Data Mining Techniques Overview
- Data Analytics Lifecycle Phases
- Data Science Vs Analytics Comparison
- Artificial Intelligence and Machine Learning Projects
- Exciting IoT Project Ideas
- 16 Exciting AI Project Ideas
- 45+ Interesting ML Project Ideas
- Exciting Deep Learning Projects
- 12 Intriguing Linear Regression Projects
- 13 Neural Network Projects
- 5 Exciting Image Processing Projects
- Top 8 Thrilling AWS Projects
- 12 Engaging AI Projects in Python
- NLP Projects for Beginners
- Concepts and Algorithms in AIML
- Basic CNN Architecture Explained
- 6 Types of Regression Models
- Data Preprocessing Steps
- Bagging vs Boosting in ML
- Multinomial Naive Bayes Overview
- Bayesian Network Example
- Bayes Theorem Guide
- Top 10 Dimensionality Reduction Techniques
- Neural Network Step-by-Step Guide
- Technical Guides and Comparisons
- Make a Chatbot in Python
- Compute Square Roots in Python
- Permutation vs Combination
- Image Segmentation Techniques
- Generative AI vs Traditional AI
- AI vs Human Intelligence
- Random Forest vs Decision Tree
- Neural Network Overview
- Perceptron Learning Algorithm
- Selection Sort Algorithm
- Career and Practical Applications in AIML
- AI Salary in India Overview
- Biological Neural Network Basics
- Top 10 AI Challenges
- Production System in AI
- Top 8 Raspberry Pi Alternatives
- Top 8 Open Source Projects
- 14 Raspberry Pi Project Ideas
- 15 MATLAB Project Ideas
- Top 10 Python NLP Libraries
- Naive Bayes Explained
- Digital Marketing Projects and Strategies
- 10 Best Digital Marketing Projects
- 17 Fun Social Media Projects
- Top 6 SEO Project Ideas
- Digital Marketing Case Studies
- Coca-Cola Marketing Strategy
- Nestle Marketing Strategy Analysis
- Zomato Marketing Strategy
- Monetize Instagram Guide
- Become a Successful Instagram Influencer
- 8 Best Lead Generation Techniques
- Digital Marketing Careers and Salaries
- Digital Marketing Salary in India
- Top 10 Highest Paying Marketing Jobs
- Highest Paying Digital Marketing Jobs
- SEO Salary in India
- Content Writer Salary Guide
- Digital Marketing Executive Roles
- Career in Digital Marketing Guide
- Future of Digital Marketing
- MBA in Digital Marketing Overview
- Digital Marketing Techniques and Channels
- 9 Types of Digital Marketing Channels
- Top 10 Benefits of Marketing Branding
- 100 Best YouTube Channel Ideas
- YouTube Earnings in India
- 7 Reasons to Study Digital Marketing
- Top 10 Digital Marketing Objectives
- 10 Best Digital Marketing Blogs
- Top 5 Industries Using Digital Marketing
- Growth of Digital Marketing in India
- Top Career Options in Marketing
- Interview Preparation and Skills
- 73 Google Analytics Interview Q&A
- 56 Social Media Marketing Q&A
- 78 Google AdWords Interview Q&A
- Top 133 SEO Interview Q&A
- 27+ Digital Marketing Q&A
- Digital Marketing Free Course
- Top 9 Skills for PPC Analysts
- Movies with Successful Social Media Campaigns
- Marketing Communication Steps
- Top 10 Reasons to Be an Affiliate Marketer
- Career Options and Paths
- Top 25 Highest Paying Jobs India
- Top 25 Highest Paying Jobs World
- Top 10 Highest Paid Commerce Job
- Career Options After 12th Arts
- Top 7 Commerce Courses Without Maths
- Top 7 Career Options After PCB
- Best Career Options for Commerce
- Career Options After 12th CS
- Top 10 Career Options After 10th
- 8 Best Career Options After BA
- Projects and Academic Pursuits
- 17 Exciting Final Year Projects
- Top 12 Commerce Project Topics
- Top 13 BCA Project Ideas
- Career Options After 12th Science
- Top 15 CS Jobs in India
- 12 Best Career Options After M.Com
- 9 Best Career Options After B.Sc
- 7 Best Career Options After BCA
- 22 Best Career Options After MCA
- 16 Top Career Options After CE
- Courses and Certifications
- 10 Best Job-Oriented Courses
- Best Online Computer Courses
- Top 15 Trending Online Courses
- Top 19 High Salary Certificate Courses
- 21 Best Programming Courses for Jobs
- What is SGPA? Convert to CGPA
- GPA to Percentage Calculator
- Highest Salary Engineering Stream
- 15 Top Career Options After Engineering
- 6 Top Career Options After BBA
- Job Market and Interview Preparation
- Why Should You Be Hired: 5 Answers
- Top 10 Future Career Options
- Top 15 Highest Paid IT Jobs India
- 5 Common Guesstimate Interview Q&A
- Average CEO Salary: Top Paid CEOs
- Career Options in Political Science
- Top 15 Highest Paying Non-IT Jobs
- Cover Letter Examples for Jobs
- Top 5 Highest Paying Freelance Jobs
- Top 10 Highest Paying Companies India
- Career Options and Paths After MBA
- 20 Best Careers After B.Com
- Career Options After MBA Marketing
- Top 14 Careers After MBA In HR
- Top 10 Highest Paying HR Jobs India
- How to Become an Investment Banker
- Career Options After MBA - High Paying
- Scope of MBA in Operations Management
- Best MBA for Working Professionals India
- MBA After BA - Is It Right For You?
- Best Online MBA Courses India
- MBA Project Ideas and Topics
- 11 Exciting MBA HR Project Ideas
- Top 15 MBA Project Ideas
- 18 Exciting MBA Marketing Projects
- MBA Project Ideas: Consumer Behavior
- What is Brand Management?
- What is Holistic Marketing?
- What is Green Marketing?
- Intro to Organizational Behavior Model
- Tech Skills Every MBA Should Learn
- Most Demanding Short Term Courses MBA
- MBA Salary, Resume, and Skills
- MBA Salary in India
- HR Salary in India
- Investment Banker Salary India
- MBA Resume Samples
- Sample SOP for MBA
- Sample SOP for Internship
- 7 Ways MBA Helps Your Career
- Must-have Skills in Sales Career
- 8 Skills MBA Helps You Improve
- Top 20+ SAP FICO Interview Q&A
- MBA Specializations and Comparative Guides
- Why MBA After B.Tech? 5 Reasons
- How to Answer 'Why MBA After Engineering?'
- Why MBA in Finance
- MBA After BSc: 10 Reasons
- Which MBA Specialization to choose?
- Top 10 MBA Specializations
- MBA vs Masters: Which to Choose?
- Benefits of MBA After CA
- 5 Steps to Management Consultant
- 37 Must-Read HR Interview Q&A
- Fundamentals and Theories of Management
- What is Management? Objectives & Functions
- Nature and Scope of Management
- Decision Making in Management
- Management Process: Definition & Functions
- Importance of Management
- What are Motivation Theories?
- Tools of Financial Statement Analysis
- Negotiation Skills: Definition & Benefits
- Career Development in HRM
- Top 20 Must-Have HRM Policies
- Project and Supply Chain Management
- Top 20 Project Management Case Studies
- 10 Innovative Supply Chain Projects
- Latest Management Project Topics
- 10 Project Management Project Ideas
- 6 Types of Supply Chain Models
- Top 10 Advantages of SCM
- Top 10 Supply Chain Books
- What is Project Description?
- Top 10 Project Management Companies
- Best Project Management Courses Online
- Salaries and Career Paths in Management
- Project Manager Salary in India
- Average Product Manager Salary India
- Supply Chain Management Salary India
- Salary After BBA in India
- PGDM Salary in India
- Top 7 Career Options in Management
- CSPO Certification Cost
- Why Choose Product Management?
- Product Management in Pharma
- Product Design in Operations Management
- Industry-Specific Management and Case Studies
- Amazon Business Case Study
- Service Delivery Manager Job
- Product Management Examples
- Product Management in Automobiles
- Product Management in Banking
- Sample SOP for Business Management
- Video Game Design Components
- Top 5 Business Courses India
- Free Management Online Course
- SCM Interview Q&A
- Fundamentals and Types of Law
- Acceptance in Contract Law
- Offer in Contract Law
- 9 Types of Evidence
- Types of Law in India
- Introduction to Contract Law
- Negotiable Instrument Act
- Corporate Tax Basics
- Intellectual Property Law
- Workmen Compensation Explained
- Lawyer vs Advocate Difference
- Law Education and Courses
- LLM Subjects & Syllabus
- Corporate Law Subjects
- LLM Course Duration
- Top 10 Online LLM Courses
- Online LLM Degree
- Step-by-Step Guide to Studying Law
- Top 5 Law Books to Read
- Why Legal Studies?
- Pursuing a Career in Law
- How to Become Lawyer in India
- Career Options and Salaries in Law
- Career Options in Law India
- Corporate Lawyer Salary India
- How To Become a Corporate Lawyer
- Career in Law: Starting, Salary
- Career Opportunities: Corporate Law
- Business Lawyer: Role & Salary Info
- Average Lawyer Salary India
- Top Career Options for Lawyers
- Types of Lawyers in India
- Steps to Become SC Lawyer in India
- Tutorials
- Software Tutorials
- C Tutorials
- Recursion in C: Fibonacci Series
- Checking String Palindromes in C
- Prime Number Program in C
- Implementing Square Root in C
- Matrix Multiplication in C
- Understanding Double Data Type
- Factorial of a Number in C
- Structure of a C Program
- Building a Calculator Program in C
- Compiling C Programs on Linux
- Java Tutorials
- Handling String Input in Java
- Determining Even and Odd Numbers
- Prime Number Checker
- Sorting a String
- User-Defined Exceptions
- Understanding the Thread Life Cycle
- Swapping Two Numbers
- Using Final Classes
- Area of a Triangle
- Skills
- Explore Skills
- Management Skills
- Software Engineering
- JavaScript
- Data Structure
- React.js
- Core Java
- Node.js
- Blockchain
- SQL
- Full stack development
- Devops
- NFT
- BigData
- Cyber Security
- Cloud Computing
- Database Design with MySQL
- Cryptocurrency
- Python
- Digital Marketings
- Advertising
- Influencer Marketing
- Performance Marketing
- Search Engine Marketing
- Email Marketing
- Content Marketing
- Social Media Marketing
- Display Advertising
- Marketing Analytics
- Web Analytics
- Affiliate Marketing
- MBA
- MBA in Finance
- MBA in HR
- MBA in Marketing
- MBA in Business Analytics
- MBA in Operations Management
- MBA in International Business
- MBA in Information Technology
- MBA in Healthcare Management
- MBA In General Management
- MBA in Agriculture
- MBA in Supply Chain Management
- MBA in Entrepreneurship
- MBA in Project Management
- Management Program
- Consumer Behaviour
- Supply Chain Management
- Financial Analytics
- Introduction to Fintech
- Introduction to HR Analytics
- Fundamentals of Communication
- Art of Effective Communication
- Introduction to Research Methodology
- Mastering Sales Technique
- Business Communication
- Fundamentals of Journalism
- Economics Masterclass
- Free Courses
20 Data Mining Interview Questions & Answers
Updated on 23 November, 2022
9.16K+ views
• 11 min read
It means that there’ll be plenty of job scope in AI and ML, and since Data Mining is an integral part of both, you must build a solid foundation in Data Mining. Data Mining refers to the technique used to convert raw data into meaningful insights that can be used by businesses and organizations. Some of the fundamental aspects of Data Mining include data & database management, data pre-processing, data validation, online updating, and discovery of valuable patterns hidden within complex datasets. Essentially, Data Mining focuses on the automatic analysis of large volumes of data to extract the hidden trends and insights from it. This is precisely why you must be ready to answer any Data Mining question that the interviewer puts before you if you want to land your dream job in AI/ML.
Learn data science certification course from the World’s top Universities. Earn Executive PG Programs, Advanced Certificate Programs, or Masters Programs to fast-track your career.
In this post, we’ve compiled a list of the most commonly asked Data Mining interview questions. It covers all levels of Data Mining interview questions and concepts (both basic and advanced levels) that every AI/ML aspirant must know.
So, without further delay, let’s get right into it!
1. Name the different Data Mining techniques and explain the scope of Data Mining.
The different Data Mining techniques are:
- Prediction – It discovers the relationship between independent and dependent instances. For instance, when considering sales data, if you wish to predict the future profit, the sale acts as an independent instance, whereas the profit is the dependent instance. Accordingly, based on the historical data of sales and profit, the associated profit is predicted value.
- Decision trees – The root of a decision tree functions as a condition/question having multiple answers. Each answer leads to specific data that helps in determining the final decision based on the data.
- Sequential patterns – It refers to the pattern analysis used for discovering identical patterns in transaction data or regular events. For example, historical data of customers helps a brand to identify the patterns in the transactions that happened in the past year.
- Clustering analysis – In this technique, automatically a cluster of objects having similar characteristics is formed. Clustering method defines classes and then places suitable objects in each class.
- Classification analysis – In this ML-based method, each item in a particular set is classified into predefined groups. It uses advanced techniques like linear programming, neural networks, decision trees, etc.
- Association rule learning – This method creates a pattern based on the relationship of the items in a single transaction.
The scope of Data Mining is to:
- Predict trends and behaviours – Data Mining automates the process of identifying predictive information in large datasets/databases.
- Discover previously unknown patterns – Data Mining tools sweep and scrape through a broad and diverse range of databases to identify the previously hidden trends. This is nothing but a pattern discovery process.
upGrad’s Exclusive Data Science Webinar for you –
Transformation & Opportunities in Analytics & Insights
2. What are the types of Data Mining?
Data Mining can be classified into the following types:
- Integration
- Selection
- Data cleaning
- Pattern evaluation
- Data transformation
- Knowledge representation
3. What is Data Purging?
Data Purging is a crucial procedure in database management systems. It helps to maintain relevant data in a database. It refers to the process of cleaning junk data by eliminating or deleting the unnecessary NULL values of row and columns. Whenever you need to load new data in the database, first, it is essential to purge the irrelevant data.
Our learners also read: Free online python course for beginners!
With frequent Data Purging of the database, you can get rid of the junk data that takes up a substantial amount of database memory, thereby slowing down the performance of the database.
4. What is the fundamental difference between Data Warehousing and Data Mining?
Data Warehousing is the technique used for extracting data from disparate sources. It is then cleaned and stored for future use. On the other hand, Data Mining is the process of exploring the extracted data using queries and then analyze the results or outcomes. It is essential in reporting, strategy planning, and visualizing the valuable insights within the data.
5. Explain the different stages of Data Mining.
There are three main stages of Data Mining:
Exploration – This stage is primarily focused on collecting data from multiple sources and preparing it for further activities like cleaning and transformation. Once the data is cleaned and transformed, it can be analyzed for insights.
Model Building and validation – This stage involves validating the data by applying different models to it and comparing the results for best performance. This step is also called as pattern identification. It is a time-consuming process since the user has to manually identify which pattern is the best suited for easy predictions.
Deployment – Once the bests-suited pattern for prediction is identified, it is applied to the dataset for obtaining estimated predictions or outcomes.
6. What is the use of Data Mining queries?
Data Mining queries help facilitate the application of the model to the new data, either to make single or multiple results. Queries can retrieve cases that fit a particular pattern more effectively. They extract the statistical memory of the training data and help in obtaining the exact pattern along with the rule of the typical case that represents a pattern in the model. Furthermore, queries can extract regression formulas and other calculations to explain patterns. They can also retrieve the details about the individual cases used in a model.
7. What are “Discrete” and “Continuous” data in Data Mining?
In Data Mining, discrete data is the data that is finite and has a meaning attached to it. Gender is a classic example of discrete data. Continuous data, on the other hand, is the data that continues to change in a well-structured manner. Age is a perfect example of continuous data.
Explore our Popular Data Science Courses .
8. What is OLAP? How is it different from OLTP?
OLAP (Online Analytical Processing) is a technology used in many Business Intelligence applications that involve complex analytical calculations. Apart from complex computations, OLAP is used for trends analysis and advanced data modelling. The primary purpose of using OLAP systems is to minimize the query response time while simultaneously boosting the effectiveness of reporting. The OLAP database stores aggregated historical data in a multidimensional schema. Being a multidimensional database, OLAP allows a user to understand how the data is coming through different sources.
OLTP stands for Online Transaction and Processing. It is inherently different from OLAP since it is used in applications that involve bulk transactions and large volumes of data. These applications are primarily found in the BFSI sector. OLTP architecture is a client-server architecture that can support cross-network transactions.
Read our popular Data Science Articles
9. Name the different storage models that are available in OLAP?
The different storage models available in OLAP are:
- MOLAP (Multidimensional Online Analytical Processing) – This is a type of data storage where the data is stored in multidimensional cubes instead of standard relational databases. It is this feature which makes the query performance excellent.
- ROLAP (Relational Online Analytical Processing) – In this data storage, the data is stored in relational databases, and hence, it is capable of handling a vast volume of data.
- HOLAP (Hybrid Online Analytical Processing) – This is a combination of MOLAP and ROLAP. HOLAP uses the MOLAP model to extract summarized information from the cube, whereas for drill-down capabilities, it uses the ROLAP model.
10. What is “Cube?”
In Data Mining, the term “cube” refers to a data storage space where data is stored. Storing data in a cube helps expedite the process of data analysis. Essentially, cubes are the logical representation of multidimensional data. While the edge of the cube has the dimension members, the body of the cube contains the data values.
Let’s assume that a company stores its employee data (records) in a cube. When it wishes to evaluate the employee performance based on a weekly or monthly basis, then the week/month becomes the dimensions of the cube.
11. What is Data Aggregation and Generalization?
Data Aggregation is the process wherein the data is combined or aggregated together to create a cube for data analysis. Generalization is the process of replacing the low-level data with high-level concepts so that the data can be generalized and produce meaningful insights.
12. Explain the Decision Tree and Time Series algorithms.
In the Decision Tree algorithm, each node is either a leaf node or a decision node. Every time you input an object in the algorithm, it produces a decision. A Decision Tree is created using the regularities of the data. All the paths connecting the root node to the leaf node are reached either by using ‘AND’ or ‘OR’ or ‘BOTH.’ It is important to note that the Decision Tree remains unaffected by Automatic Data Preparation.
The Time-Series algorithm is used for data types whose values keep changing continually based on time (for example, a person’s age). When you trained the algorithm and tune it to predict the dataset, it can successfully keep track of the continuous data and make accurate predictions. The Time-Series algorithm creates a specific model that can predict the future trends of the data based on the original dataset.
13. What is clustering?
In Data Mining, clustering is the process used to group abstract objects into classes containing similar objects. Here, a cluster of data objects is treated as one group. Thus, during the analysis process, data partition happens in groups which are then labelled based on identical data. Cluster analysis is pivotal to Data Mining because it is highly scalable and dimensional, and it can also deal with different attributes, interpretability, and messy data.
Data clustering is used in several applications, including image processing, pattern recognition, fraud detection, and market research.
14. What are the common issues faced during Data Mining?
During the Data Mining process, you can encounter the following issues:
- Uncertainty handling
- Dealing with missing values
- Dealing with noisy data
- Efficiency of algorithms
- Incorporating domain knowledge
- Size and complexity of data
- Data selection
- Inconsistency between the data and discovered knowledge.
Top Data Science Skills to Learn to upskill
SL. No | Top Data Science Skills to Learn | |
1 |
Data Analysis Online Courses | Inferential Statistics Online Courses |
2 |
Hypothesis Testing Online Courses | Logistic Regression Online Courses |
3 |
Linear Regression Courses | Linear Algebra for Analysis Online Courses |
15. Specify the syntax for – Interestingness Measures Specification, Pattern Presentation and Visualization Specification, and Task-Relevant Data Specification.
The syntax for Interestingness Measures Specification is:
with <interest_measure_name> threshold = threshold_value
The syntax for Pattern Presentation and Visualization Specification is:
display as <result_form>
The syntax for Task-Relevant Data Specification is:
use database database_name
or
use data warehouse data_warehouse_name
in relevance to att_or_dim_list
from relation(s)/cube(s) [where condition] order by order_list
group by grouping_list
16. Name the different level of analysis in Data Mining?
The various levels of analysis in Data Mining are:
- Rule induction
- Data visualization
- Genetic algorithms
- Artificial neural network
- Nearest neighbour method
17. What is STING?
STING stands for Statistical Information Grid. It is a grid-based, multi-resolution clustering method in which all the objects are contained into rectangular cells. While the cells are kept in various levels of resolutions, these levels are further arranged in a hierarchical structure.
18. What is ETL? Name some of the best ETL tools.
ETL stands for Extract, Transform and Load. It is a software that can read the data from the specified data source and extract a desired subset of data. After this, it transforms the data using rules and lookup tables and converts it to the desired form. Finally, it uses the load function to load the resulting data into the target database.
The best ETL tools are:
- Oracle
- Ab Initio
- Data Stage
- Informatica
- Data Junction
- Warehouse Builder
19. What is Metadata?
In simple words, metadata is the summarized data that leads to the larger dataset. Metadata contains important information like the number of columns used, the order of the fields, the data types of the fields, fix width and limited width, and so on.
20. What are the advantages of Data Mining?
Data Mining has four core advantages:
- It helps make sense of raw data and explore, identify, and understand the patterns hidden within the data.
- It helps automates the process of finding predictive information in large databases, thereby helping to promptly identify the previously hidden patterns.
- It helps to screen and validate the data and understand where it is coming from.
- It promotes faster and better decision making, thereby helping businesses to take necessary actions to increase revenue and lower operational costs.
These are the reasons why Data Mining has become an integral part of numerous industries, including marketing, advertising, IT/ITES, business intelligence, and even government intelligence.
We hope these Data Mining interview questions and their answers help you to break the ice with Data Mining. Although these are just a few basic level questions you must know, they will help you to get in the flow and dig deeper into the subject matter.
If you are curious to learn about data science, check out IIIT-B & upGrad’s Executive PG Program in Data Science which is created for working professionals and offers 10+ case studies & projects, practical hands-on workshops, mentorship with industry experts, 1-on-1 with industry mentors, 400+ hours of learning and job assistance with top firms.
Frequently Asked Questions (FAQs)
1. What are the drawbacks of using a decision tree algorithm?
Even a minor change in the data can cause a significant change in the structure of the decision tree, resulting in instability. When compared to other algorithms, the calculation of a decision tree might be rather complex at times. Decision tree training is relatively expensive due to the complexity and time required. The Decision Tree technique fails when it comes to applying regression and predicting continuous values.
2. What is the difference between data mining clustering and classification?
Clustering is a technique of unsupervised learning, whereas classification is a way of supervised learning. Clustering is the process of grouping data points into clusters based on their commonalities. Classification entails labelling the input data with one of the output variable's class labels. Clustering splits the dataset into subgroups, allowing examples with similar functionality to be grouped together. It doesn't rely on labelled data or a training set to work. Classification, on the other hand, classifies new data based on observations from the training set.
3. Are there any disadvantages of data mining?
Many privacy problems arise when data mining is used. Despite the fact that data mining has opened the path for simple data collection in its own way. When it comes to precision, it still has certain limits. The data obtained might be incorrect, producing issues with decision-making. The data collecting procedure for data mining uses a lot of technology. Every piece of data created requires its own storage and upkeep. The cost of implementation might skyrocket as a result of this.