COURSES
MBAData Science & AnalyticsDoctorate Software & Tech AI | ML MarketingManagement
Professional Certificate Programme in HR Management and AnalyticsPost Graduate Certificate in Product ManagementExecutive Post Graduate Program in Healthcare ManagementExecutive PG Programme in Human Resource ManagementMBA in International Finance (integrated with ACCA, UK)Global Master Certificate in Integrated Supply Chain ManagementAdvanced General Management ProgramManagement EssentialsLeadership and Management in New Age BusinessProduct Management Online Certificate ProgramStrategic Human Resources Leadership Cornell Certificate ProgramHuman Resources Management Certificate Program for Indian ExecutivesGlobal Professional Certificate in Effective Leadership and ManagementCSM® Certification TrainingCSPO® Certification TrainingLeading SAFe® 5.1 Training (SAFe® Agilist Certification)SAFe® 5.1 POPM CertificationSAFe® 5.1 Scrum Master Certification (SSM)Implementing SAFe® 5.1 with SPC CertificationSAFe® 5 Release Train Engineer (RTE) CertificationPMP® Certification TrainingPRINCE2® Foundation and Practitioner Certification
Law
Job Linked
Bootcamps
Study Abroad
MS in Data AnalyticsMS in Project ManagementMS in Information TechnologyMasters Degree in Data Analytics and VisualizationMasters Degree in Artificial IntelligenceMBS in Entrepreneurship and MarketingMSc in Data AnalyticsMS in Data AnalyticsMS in Computer ScienceMaster of Science in Business AnalyticsMaster of Business Administration MS in Data ScienceMS in Information TechnologyMaster of Business AdministrationMS in Applied Data ScienceMaster of Business Administration | STEMMS in Data AnalyticsMaster of Business AdministrationMS in Information Technology and Administrative Management MS in Computer Science Master of Business Administration Master of Business Administration-90 ECTSMSc International Business ManagementMS Data Science Master of Business Administration MSc Business Intelligence and Data ScienceMS Data Analytics MS in Management Information SystemsMSc International Business and ManagementMS Engineering ManagementMS in Machine Learning EngineeringMS in Engineering ManagementMSc Data EngineeringMSc Artificial Intelligence EngineeringMPS in InformaticsMPS in Applied Machine IntelligenceMS in Project ManagementMPS in AnalyticsMS in Project ManagementMS in Organizational LeadershipMPS in Analytics - NEU CanadaMBA with specializationMPS in Informatics - NEU Canada Master in Business AdministrationMS in Digital Marketing and MediaMSc Sustainable Tourism and Event ManagementMSc in Circular Economy and Sustainable InnovationMSc in Impact Finance and Fintech ManagementMS Computer ScienceMBA in Technology, Innovation and EntrepreneurshipMSc Data Science with Work PlacementMSc Global Business Management with Work Placement MBA with Work PlacementMS in Robotics and Autonomous SystemsMS in Civil EngineeringMS in Internet of ThingsMSc International Logistics and Supply Chain ManagementMBA- Business InformaticsMSc International ManagementMBA in Strategic Data Driven ManagementMSc Digital MarketingMBA Business and MarketingMSc in Sustainable Global Supply Chain ManagementMSc Digital Business Analytics MSc in International HospitalityMSc Luxury and Innovation ManagementMaster of Business Administration-International Business ManagementMS in Computer EngineeringMS in Industrial and Systems EngineeringMaster in ManagementMSc MarketingMSc Global Supply Chain ManagementMS in Information Systems and Technology with Business Intelligence and Analytics ConcentrationMSc Corporate FinanceMSc Data Analytics for BusinessMaster of Business AdministrationMaster of Business AdministrationMaster of Business AdministrationMSc in International FinanceMSc in International Management and Global LeadershipMaster of Business AdministrationBachelor of BusinessBachelor of Business AnalyticsBachelor of Information TechnologyMaster of Business AdministrationMBA Business AnalyticsMSc in Marketing Analytics and Data IntelligenceMS Biotechnology Management and EntrepreneurshipMSc in Luxury and Fashion ManagementMaster of Business Administration (90 ECTS)Bachelor of Business Administration (180 ECTS)B.Sc. Computer Science (180 ECTS) MSc in International Corporate Finance MSc in Sustainable Luxury and Creative IndustriesMSc Digital MarketingMSc Global Supply Chain Management (PGMP)MSc Marketing (PGMP)MSc Corporate Finance (PGMP)MSc Data Analytics for Business (PGMP)MS Business AnalyticsMaster of Business AdministrationMS Quantitative FinanceMS Fintech ManagementMS Business Analytics PGMPState University of New York Bachelors Program - STEM MSc Business Intelligence and Data Science (PGMP)MSc International Logistics and Supply Chain Management ( PGMP)MSc International Management (PGMP)MSc Psychology & Management (PGMP)MSc Finance (PGMP)State University of New York Bachelor's Year 1 Program
For College Students

Nuances of Logistic Regression - Variable Transformation-I

$$/$$

In the last lecture, you learnt about segmentation, which is primarily done for increasing the predictive power of a model. However, so far you’ve only seen topics such as sample selection and segmentation, which talk about the data that is used in the model building process.

 

Now, the next steps, as you may recall from the last session, are dummy variable creation, standardising scales of continuous variables, etc. These processes are generally referred to as variable transformation. Can other types of variable transformations be performed before building a logistic regression model?

 

Let's hear from Hindol about that.

$$/$$

From earlier sessions, you already know that categorical variables have to be transformed into dummies. Also, you were told that numeric variables have to be standardised, so that they all have the same scale. However, you could also convert numeric variables into dummy variables, using the techniques mentioned by Hindol in the video above.

 

There are some pros and cons of transforming variables to dummies. Creating dummies for categorical variables is very straightforward. You can directly create n-1 new variables from an existing categorical variable if it has n levels. But for continuous variables, you would be required to do some kind of EDA analysis for binning the variables.

 

The major advantage offered by dummies especially for continuous variables is that they make the model stable. In other words, small variations in the variables would not have a very big impact on a model that was made using dummies, but they would still have a sizeable impact on a model built using continuous variables as is.


On the other side, there are some major disadvantages that exist. E.g. if you change the continuous variable to dummies, all the data will be compressed into very few categories and that might result in data clumping.